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Abstract

In an era where intelligent tools increasingly shape everyday decision-making, this
study explores how varying forms of digital assistance—self-guided thinking,
traditional search engines, and generative Al—affect users’ cognitive load, sense of
control, trust, and creativity. To examine this, we designed a within-subjects
experiment where 15 participants completed three time-constrained planning tasks:
one unaided, one using Google, and one supported by ChatGPT. We employed a
triangulated method combining EEG data (frontal theta and left alpha), task
performance scores (completion and creativity), and post-task interviews to capture
both neurophysiological and experiential dimensions. Results showed that
Google-assisted tasks triggered the highest cognitive workload, reflected in
widespread EEG activity and frequent interview reports of fatigue and frustration.
Self-resoning tasks elicited moderate but focused effort, supporting a higher sense of
creative ownership. In contrast, ChatGPT significantly reduced EEG markers of
mental effort, while many participants felt less in control and skeptical of the Al's
reasoning transparency. While ChatGPT improved task efficiency, its use raised
concerns about over-reliance and diminished user agency—echoing existing
literature on automation bias and human-Al trust dynamics. This study highlights a
critical design insight: reduced cognitive effort does not automatically lead to a better
user experience. Aligning with human-centered Al design principles, we argue for
interactive systems that balance automation with user autonomy, particularly in
complex tasks requiring judgment and personalization. These findings offer practical
implications for UX design and Al interface development: in addition to streamlining
tasks, tools should be designed to sustain engagement, foster creativity, and
preserve a meaningful sense of control.

1. Introduction

In recent years, the integration of artificial intelligence (Al) into everyday
decision-making tools has transformed the way humans engage with complex
cognitive tasks. Systems such as ChatGPT can produce structured plans, explain
technical concepts, and simulate personalized advice within seconds. These
capabilities provide unprecedented efficiency, however they also raise critical
questions in cognitive and user experience research: What happens to human
cognition when intelligent systems take over key aspects of problem solving? And
what trade-offs emerge between lowered mental effort and diminished engagement,
autonomy, or trust? Prior studies indicate that Al assistance can reduce cognitive
load by simplifying information processing, generating drafts, or filtering content,
making once-demanding tasks more accessible and efficient.



However, reductions in cognitive effort may carry hidden costs. Empirical evidence
demonstrates a significant negative correlation between frequent Al tool usage and
critical thinking abilities, mediated by increased cognitive offloading (Gerlich, 2025).
Neurophysiological data from MIT provide further support that participants using
ChatGPT consistently performed worse across neural, linguistic, and behavioral
measures, and exhibited the weakest brain connectivity compared to other
conditions (Kosmyna et al., 2025). A systematic review of educational applications
reinforces these findings, concluding that students' over-reliance on Al dialogue
systems can undermine critical thinking, decision-making, and analytical capacities
(Zhai et al., 2024). These results suggest that while Al reduces immediate cognitive
burden, it may also compromise the development or exercise of higher-order
reasoning skills. Beyond performance, delegating responsibility to Al has been
associated with diminished perceived control, altered trust dynamics, and reduced
reflective engagement. Research demonstrates that when individuals are monitored
by algorithms rather than humans, they consistently report lower perceptions of
autonomy and stronger resistance intentions (Schlund & Zitek, 2024). Taken
together, this emerging body of research challenges the assumption that cognitive
offloading is universally beneficial, highlighting psychological and behavioral
trade-offs in human-Al collaboration.

While much work has examined Al's role in lowering cognitive load, fewer studies
have investigated its effects on subjective control and decision ownership,
particularly under time constraints when individuals are most vulnerable to deferring
agency (Steyvers & Kumar, 2024). This gap is particularly concerning because
time-pressured decision-making contexts are precisely where Al assistance is most
likely to be deployed in real-world applications—from emergency medical decisions
to financial trading to crisis management. Without understanding how time
constraints interact with Al assistance to affect user autonomy, we risk designing
systems that systematically undermine human agency in high-stakes situations
where maintaining cognitive control is most critical. A small but growing set of
empirical studies has begun to address this by measuring cognitive load during
Al-assisted tasks with tools such as EEG, which captures neural correlates of mental
effort (Kosmyna et al., 2024). Research in explainable Al demonstrates that different
explanation types can significantly influence users' cognitive burden and task
performance, with studies involving healthcare professionals showing that
explanation styles strongly impact cognitive load, task completion time, and accuracy
(Herm et al., 2023). However, comprehensive studies triangulating cognitive load,
performance, and trust across different problem-solving conditions remain scarce.

To investigate these dynamics, the choice of an appropriate baseline is essential.
Google represents a meaningful middle ground between unaided reasoning and
Al-assisted planning, as it requires users to actively engage in query construction,
source evaluation, and information synthesis while maintaining decision-making
agency. Its widespread use provides ecological validity for empirical comparisons of



cognitive offloading effects. This study aims to address these gaps by systematically
comparing participants' cognitive responses and task outcomes across three
problem-solving scenarios: unaided self-reasoning, search-assisted reasoning with
Google (baseline), and Al-assisted planning with ChatGPT. In addition to EEG-based
measurements of cognitive load, the study evaluated participants' subjective sense
of control, task satisfaction, and trust in content accuracy. By integrating behavioral,
neural, and self-report measures, this research seeks to provide a comprehensive
account of when and how cognitive offloading enhances problem solving, and when
it risks undermining autonomy and reflective engagement.

2. Literature Review

The growing integration of artificial intelligence (Al) into everyday problem-solving
tasks has raised important questions about its cognitive, emotional, and experiential
impact on users. A significant body of literature shows that Al tools can reduce
cognitive load by offloading routine thinking, synthesizing complex information, and
providing structured outputs (Grinschgl et al., 2021; Holstein et al., 2022). This
benefit is especially apparent in educational settings, where intelligent tutoring
systems and automated feedback tools reduce working memory demands, allowing
learners to focus on task execution (Makransky et al.. 2019). However, recent
studies caution that such reductions in mental effort may also suppress engagement,
decrease creative input, and compromise users’ sense of control and agency
(Shneiderman, 2020; Lee et al., 2025). This review draws on cognitive psychology,
HCI, and educational research to examine how different types of digital
tools—ranging from unaided reasoning to Al-based assistants—affect users’ mental
workload, control perceptions, trust, and creativity, especially under time-constrained
decision-making conditions.

2.1. Cognitive Load and Technological Modulation

Cognitive Load Theory (Sweller, 1988) offers a foundational lens to understand how
digital systems shape user experience through working memory demands. In
EEG-based research, frontal theta activity (4—7 Hz) is widely accepted as a neural
correlate of cognitive workload, while reductions in parietal or left-hemispheric alpha
power (8—13 Hz) reflect increased attentional engagement (Klimesch, 1999;
Antonenko et al., 2010). Several studies demonstrate that cognitive aids like Al tools
reduce frontal theta activity, suggesting lower task effort, but also risk suppressing
germane load—the effort associated with active learning or problem structuring. This
creates a trade-off zone where task ease may come at the cost of mental
elaboration. Figure 1 illustrates this cognitive load redistribution, showing how Al
assistance creates a dual effect: while extraneous load decreases substantially
through automated processing, germane load simultaneously diminishes, creating
what researchers term a cognitive trade-off zone where immediate efficiency gains
potentially compromise long-term learning and skill acquisition.
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Figure 1. Cognitive Load Theory Framework.

Nevertheless, the benefits of offloading depend on task type and tool design.
Research has shown that cognitive offloading, while improving immediate task
performance, can decrease subsequent memory performance for the offloaded
information (Grinschgl et al., 2021). In contrast, tools like ChatGPT offer low-effort,
fluent outputs but may oversimplify reasoning steps, potentially impeding deeper
engagement (Lee et al., 2025). This distinction forms the basis for our investigation
into how unaided, search-assisted, and Al-assisted conditions shape mental
workload. Recent empirical evidence reveals a concerning paradox in Al-assisted
cognition. The most compelling evidence comes from MIT research using EEG to
monitor brain activity during Al-assisted tasks. Kosmyna et al. (2025) found that
participants using ChatGPT for essay writing exhibited significantly reduced brain
connectivity and lower neural engagement compared to those using Google search
or working unaided. Eigure 2 captures these MIT Study Findings through
comparative brain network visualizations: the left panel displays dense,
interconnected neural pathways characteristic of unaided problem-solving, with high
gamma and beta wave activity indicating active cognitive processing.
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Figure 2. MIT Study Findings - The Cognitive Paradox of Al Assistance.



This neurophysiological evidence aligns with broader behavioral studies. Gerlich
(2025) conducted a comprehensive study of 666 participants and found a significant
negative correlation between frequent Al tool usage and critical thinking abilities, with
cognitive offloading serving as the primary mechanism. The research suggests that
while Al reduces immediate cognitive burden, it may compromise the development of
analytical skills over time. This pattern emerges consistently across diverse
populations and task domains, suggesting a fundamental rather than contextual
effect. Educational research provides additional support for these concerns. The
emergence of automation bias—the tendency to over-rely on automated systems
even when they make mistakes—represents a critical mechanism linking reduced
cognitive engagement to compromised decision quality (Mosier & Skitka, 1996).
When our brains are less engaged due to Al assistance, we become less likely to
catch errors or consider alternatives, creating a reinforcing cycle of dependence and
reduced cognitive autonomy.

2.2. Perceived Control, Decision Ownership, and Trust in Al Systems

The psychological experience of control—defined as users’ perceived influence over
decisions and outcomes—has become a critical factor in Al system design (Norman
2013; Shneiderman, 2020). Research warns that when Al delivers ready-made
solutions, users tend to accept them uncritically, a phenomenon known as
automation bias (Mosier & Skitka, 1996). Lee et al. (2025) found that under time
pressure, participants engaged in less reflective thinking and were less willing to
challenge Al outputs, leading to diminished agency and the externalization of
responsibility when errors occurred. Similar trends appear in educational settings,
where overreliance on automated feedback reduces learners’ independent revision
and critical judgment (Holstein et al., 2022).

A major driver of this control loss is interface design. When users are presented only
with finalized outputs rather than editable or modular components, they become
passive recipients of Al-generated content—a form of technological paternalism that
prioritizes efficiency over empowerment. This lack of transparency and co-creation
opportunities restricts perceived choice and discourages reflective engagement.
Human-in-the-loop approaches balancing automation with user agency have
improved satisfaction and performance across domains such as academic feedback
and content curation (Holstein et al., 2022; Sinha & Swearingen, 2002). Figure 3
illustrates this Control Loss Mechanism, showing how system opacity,
over-automation, and limited modularity cascade to erode user agency and decision
ownership.
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Figure 3. Control Loss Mechanism.

2.3. Time Constraints as a Moderating Factor and Decision Strategy

A critical yet underexplored dimension in Al interaction research is the role of time
pressure. Many real-world tasks—such as standardized tests, content
summarization under deadline, or rapid planning (such as preparing a last-minute
trip)—require fast yet accurate decision-making. In these conditions, users may rely
more heavily on external tools, not due to preference, but necessity (Payne et al.,
1993). Under such pressure, decision strategies shift from compensatory (weighing
all options) to non-compensatory (shortcut-based), favoring fluency and speed over
scrutiny (Rieskamp & Hoffrage, 2008). Sauseng et al. (2005) demonstrated that time
pressure increases frontal theta and decreases parietal alpha in EEG signals,
indicating both elevated cognitive effort and constrained attentional resources. In
such conditions, the appeal of Al suggestions is amplified—but so is the risk of
overreliance. This urgency-based trade-off heightens the relevance of Al-human
collaboration models. While Al tools can accelerate decision-making, they should
also preserve a sense of authorship and judgment. Otherwise, the user becomes a
passive recipient—a dangerous shift in domains where accountability matters.

Under temporal pressure, decision-makers typically transition from compensatory
strategies (systematic evaluation of multiple attributes) to non-compensatory
strategies (simplified rules or external guidance) (Rieskamp & Hoffrage, 2008). This
strategic shift makes Al assistance simultaneously more appealing and more
problematic. While Al can provide rapid solutions when time is limited, users under
pressure lack the cognitive resources necessary for adequate evaluation of Al
recommendations. Figure 4 presents the Time Pressure Moderation Model as a
dual-pathway diagram illustrating how temporal constraints fundamentally alter
human-Al interaction dynamics.
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Figure 4. Time Pressure Moderation Model.

In addition, individual variability in cognitive style may moderate the effects of Al
assistance. Epstein et al. (1996) distinguish between intuitive and analytical thinkers,
a distinction echoed in recent research on digital decision-making (Evans &
Stanovich, 2013). Intuitive users tend to prioritize plausibility and fluency, showing
greater reliance on Al-generated outputs when they appear coherent. Analytical
users, in contrast, scrutinize sources, often cross-referencing Al outputs with
external information—particularly in domains requiring precision (Lee et al.. 2025). In
the context of time-limited tasks such as academic assessments or content synthesis
under a deadline, these differences become pronounced. Intuitive thinkers may
benefit more from fluent suggestions, while analytical thinkers may find them
insufficient or even distracting. This divergence has important implications for the
design of adaptive Al tools. However, our study does not position cognitive style as
the primary research axis. Rather, it acknowledges it as a moderating variable that
may explain why some users prefer hybrid strategies (such as Google with Al), while
others commit fully to one mode. This approach allows us to understand user-tool
interaction as both situational and person-dependent.

2.4. Why Google Search as a Baseline?

To investigate the cognitive and experiential effects of different digital tools, it is
necessary to establish a meaningful baseline. In this study, Google Search was
selected as a “middle ground” condition between unaided and Al-assisted planning.
Unlike self-reasoning tasks, Google offers access to external information, helping
users overcome memory or knowledge gaps. Unlike ChatGPT, it does not synthesize
or evaluate content—it requires users to compare sources, cross-reference ideas,



and make evaluative judgments (Wineburg et al., 2016). This distinction is critical.
Google promotes active engagement, source evaluation, and synthesis, while
ChatGPT provides pre-digested summaries that may suppress those steps. Thus,
Google represents a condition of “high agency, high effort,” making it an ideal
baseline to examine how automation shifts effort and control. Studies have found
that search-based planning requires more attentional shifting and meta-cognitive
monitoring, especially in tasks like content curation or academic research
(Koetsenruijter & Van der Wurff, 2017). In contrast, Al tools often prioritize fluency
and completeness—offering “good enough” answers that may bypass deeper
reflection. This makes Google a theoretically and practically grounded control
condition.

2.5. Individual Differences and Style-Tool Fit

While not a central focus of this study, cognitive style remains a relevant moderating
factor. According to Epstein et al. (1996), intuitive users rely on fast, associative
thinking and are more susceptible to automation bias. Analytical users, conversely,
tend to verify information and engage more deeply with complex tasks. In
Al-supported decision-making, these styles manifest differently: intuitive thinkers
may benefit from fluent outputs, while analytical users may distrust overly simplified
content (Evans & Stanovich, 2013). Studies like Gerlich (2025) suggest that
high-frequency Al users tend to exhibit more intuitive reasoning patterns, often at the
expense of critical engagement. These individual differences underscore the need
for adaptable interface design. Systems that allow both automatic suggestions and
user revisions may better serve diverse user profiles.

2.6. Creativity and Constraint in Al-Supported Planning

Creativity is often overlooked in studies of cognitive load, but in real-world tasks like
meal and fitness planning, it is essential. Amabile (1996) emphasizes that creativity
thrives under conditions of autonomy and exploration. Al tools, while efficient, may
undermine these conditions by encouraging users to anchor on suggested
templates, limiting divergent thinking. In design tasks, participants exposed to
Al-generated ideas showed reduced originality and fewer novel combinations
(Grinschgl et al., 2021). Similarly, in planning tasks like this study, creativity may
suffer when Al suggestions fail to account for contextual nuances—like food
boredom or lifestyle disruptions. Evaluating creativity via expert scoring provides a
needed complement to traditional performance metrics.

2.7. Research Gap and Question

Taken together, the literature reveals a paradox: Al tools reduce effort but may also
reduce agency, engagement, and originality—especially under time pressure.
Although previous research has explored each of these dimensions separately, few



studies triangulate neural, behavioral, and subjective data to paint a holistic picture
of how users experience digital tools.This study addresses that gap by combining
EEG, expert-scored task outputs, and interview data to answer three core research
questions:

e RQ1: How does the mode of digital assistance (self-reasoning), Google,
ChatGPT) impact users' cognitive load and mental workload during
problem-solving tasks?

e RQ2: How does the use of Al (ChatGPT) affect users' perceived control, trust,
and performance compared to traditional tools?

o RQ3: What are the implications of tool choice on task creativity and user
experience quality?

3. Methodology

To investigate how Al assistance influences users' cognitive load, perceived control,
and problem-solving outcomes under time constraints, this study adopted a
within-subjects experimental design involving EEG monitoring, behavioral analysis,
and semi-structured interviews. The experiment involved three different task
conditions: self-reasoning (Task 1), Google-assisted (Task 2), and Al-assisted (Task
3), all requiring participants to generate a one-week meal and exercise plan for three
different target personas under different scenarios.

3.1. Participant Recruitment

A total of 16 participants (eight male, eight female) aged between 21 and 35 years
(M =27.4, SD = 4.2) took part in the study. All participants held at least a bachelor’s
degree and reported engaging in regular exercise. Additionally, they possessed
basic knowledge of dietary and fitness principles, including familiarity with meal
planning and healthy lifestyle practices.

3.2. Experimental Hypothesis and Baseline Justification

The central hypothesis is that participants, under time-limited decision-making
pressure, will experience differences in perceived cognitive load, trust, and sense of
control based on the tool used to support the task. While Al may reduce cognitive
effort and improve completion rates, it may also diminish perceived agency or
creative ownership. To contextualize these differences, the study adopted Google
Search as a baseline condition, representing moderate effort and high agency.
Google provides participants with access to a wide range of raw information, but
requires effortful synthesis and source selection. This contrasts with Al tools like
ChatGPT, which offer fluency and structure but risk reducing decision-making
autonomy.



3.3. Interview Design and Post-Task Measures

To triangulate EEG and task-based findings, participants were interviewed using a
consistent framework (Table 1):

Interview Question

Research Intention / Purpose

Which of the three tasks felt most difficult or
stressful? Why?

Identifying which tool induced the highest level
of cognitive load under time pressure helps
validate subjective stress measures alongside
EEG.

Can you describe how you felt in Task 1 vs Task
2 vs Task 37?

To explore participants’ emotional responses
and perceived mental effort during each
condition, supplement behavioral and EEG data
with qualitative user insight.

Did you trust the information provided by
ChatGPT? Why or why not?

To assess the level of trust in Al-generated
content, referencing concerns around
automation bias and source credibility.

When using different tools, did you feel more or
less in control of the outcome?

To measure participants’ perceived control and
whether Al use diminished their sense of
decision-making agency.

Overall, which tool helped you most in thinking
and decision-making?

To evaluate which tool was perceived as most
supportive for ideation, structure, or efficiency,
corresponding to subjective satisfaction and
task outcomes.

If you could combine the tools, how would you
prefer to do so?

To investigate preferences for a hybrid strategy,
revealing insights into how users balance Al

support with autonomy in complex
decision-making.

Table 1. Post-Experiment Interview Questions and Their Research Objectives.

These questions were crafted to probe not only emotional reactions but also
participants' sense of agency, trust, and tool preference. Interviews lasted
approximately 15-20 minutes per participant.

A standardized 1-to-5 scoring rubric (see Table 2) was developed to ensure
objectivity and consistency across participants. This rubric was informed by
established creativity and task performance assessment frameworks, particularly
Amabile's Consensual Assessment Technique (Amabile. 1996) and Cropley's (2000)
framework for defining and measuring creativity, adapted to reflect the specific
requirements of this study's task context—namely, planning feasible and
personalized weekly health routines under time pressure. The completion score
reflected the extent to which participants responded comprehensively to the
persona's goals and constraints, while the creativity score evaluated the novelty,




flexibility, and personalization of the proposed plans. To reduce rater bias, both
evaluators were blind to experimental conditions.

Score Completion Criteria Creativity Criteria
5 Fully covers all 7 days with detailed Highly original, diverse, and flexible;
meal and exercise plans that align demonstrates innovative thinking and
with personal goals and constraints. personalized adaptation.

4 Mostly complete with minor omissions | Shows moderate creativity with some

or simplifications; maintains clear variety and user-driven ideas; not
structure and relevance to the task. entirely novel but well thought out.

3 Noticeable gaps (e.g., fewer than 5 Average creativity; relies on common
days covered) or vague content; lacks | templates with limited personalization or
practical detail or clear logic. innovation.

2 Poor structure or deviation from task Very limited creativity; repetitive or
requirements; significant inaccuracies | generic suggestions with minimal

or incomplete segments. adaptation.
1 Task largely incomplete or entirely No creativity is evident; direct
irrelevant to the scenario provided. copy-paste or unmodified generic output
is not allowed without contextual
adjustment.

Table 2. Task Evaluation Rubric: Completion and Creativity (1-5 Scale)

3.4. Procedure

Each participant was briefed on the general purpose of the study, and informed
consent was obtained. Prior to starting the experiment, EEG equipment was fitted
and calibrated to ensure signal stability. The entire experiment was conducted in a
quiet, temperature-controlled lab to minimize environmental distractions.

The study comprised three cognitive planning tasks, each with a time limit of 20
minutes:

e Task 1 (Self-reasoning): Participants were asked to create a one-week diet
and workout plan for a specific persona, without using any tools.

e Task 2 (Google-assisted): Participants were allowed to use Google to search
for meal ideas, fitness tips, and nutritional information.

e Task 3 (ChatGPT-assisted): Participants could use a pre-configured ChatGPT
interface to generate suggestions, ask follow-up questions, and edit outputs.



Each task presented a different fictional persona with varying needs (e.g., a male
participant who needed to travel for three days while maintaining his fat-loss goals,
or a female college student striving for fat reduction while facing consecutive days of
rain). These contextual shifts were intentionally designed to avoid learning bias and
ensure that each task felt novel and cognitively engaging. Participants followed a
fixed order of preparation (Figure 5) : (1) consent and briefing, (2) EEG calibration,
(3) task execution, and (4) post-task interview. During each task, EEG data were
continuously recorded. Participants were instructed not to revisit previous tasks to
maintain the integrity of time-bound cognitive load. After all tasks were completed,
each participant underwent a semi-structured interview designed to capture
emotional, cognitive, and strategic reflections. Interviews were audio-recorded and
transcribed for further analysis.
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Figure 5. Experimental Workflow Diagram.



Importantly, the selection of meal and fithess planning as the core experimental task
was deliberate, as it balances realism with cognitive complexity. First, this is a
familiar yet cognitively demanding problem—many people regularly confront the
need to plan meals and exercise, especially under personal constraints such as time,
health goals, or travel. Second, it is a hybrid task that requires both structural
thinking and creativity: participants must not only search for information but also
synthesize schedules, adjust for nutritional needs, and introduce variety—providing a
rich context to observe how Al tools influence planning, decision-making, and
perceived control. Third, this task allows for easily personalized scenarios through
fictional personas (e.g., planning for someone under stress or with limited
resources), which helps keep all three tasks novel and comparably engaging. This
design ensures that tool-based differences reflect shifts in cognitive process—not
task repetition.

3.5. Variable Measurement and Data Sources

This study employed a comprehensive mixed-methods approach integrating
physiological, behavioral, and subjective data sources to capture participant
experiences across different Al assistance conditions. The measurement framework
enabled triangulation of findings through converging evidence from distinct analytical
approaches (Denzin, 2012).

3.5.1. EEG Data Analysis

Cognitive load was assessed primarily through EEG monitoring, with particular
attention to frontal theta/beta ratios and alpha band activity as established indicators
of cognitive effort under time-constrained planning tasks (Antonenko et al., 2010;
Gevins & Smith, 2000). EEG data were processed using Advanced Source Analysis
(ASA) software, employing descriptive visual inspection of topographic power
distribution patterns across standard frequency bands (Delta: 0.5-4 Hz, Theta: 4-8
Hz, Alpha: 8-13 Hz, Beta: 13-30 Hz) following established protocols in cognitive
neuroscience research (Klimesch, 1999). The analysis focused on (figure 6): (1)
frontal regions (Fz, F3, F4) for working memory load and executive control markers
(Gevins et al., 1997), (2) left hemisphere areas (C3, P3, T7) associated with verbal
processing and cognitive effort (Gevins & Smith, 2000). This descriptive approach
was deemed appropriate given the well-established topographic signatures of
cognitive load in EEG literature (Parasuraman & Rizzo, 2007).

3.5.2. Behavioral Performance Assessment

Task outcomes were evaluated along three dimensions: completion rates, quality
ratings, and alignment with personal constraints. Two independent evaluators, both
possessing advanced expertise and more than ten years of professional experience
in nutrition and exercise science, assessed all participant outputs using structured
10-point Likert scales for completion quality and creativity, following established



protocols for expert evaluation in cognitive research (Amabile, 1996; Cropley, 2000).
Both evaluators were blind to experimental conditions, and inter-rater reliability was
calculated using intraclass correlation coefficients to ensure consistency (Shrout &
Fleiss, 1979).

3.5.3. Qualitative Interview Analysis

Post-task semi-structured interviews (15-20 minutes each) were audio-recorded and
transcribed for systematic thematic analysis following Braun and Clarke's (2006)
framework. The coding process involved: (1) initial familiarization and open coding,
(2) axial coding to group related themes, and (3) selective coding aligned with
research objectives (Strauss & Corbin, 1998). Interview questions probed cognitive
load perception, trust and credibility assessments, perceived control, tool
preferences, and strategic decision-making approaches across the three
experimental conditions.

3.5.4. Triangulation Framework

The integration of multiple data sources enabled comprehensive cross-validation
through several mechanisms established in mixed-methods research (Tashakkori &
Teddlie, 2010):

e Physiological-Behavioral Convergence: EEG indicators of cognitive load were
cross-referenced with performance metrics to validate neurophysiological
interpretations, following protocols established in cognitive workload research
(Parasuraman & Wilson, 2008). Expected correlations included increased
frontal theta activity corresponding with specific performance patterns under
high cognitive load conditions.

e Subjective-Objective Validation: Participant self-reports of cognitive effort and
tool effectiveness were compared against EEG measures and performance
outcomes, identifying conditions where subjective experiences aligned with or
diverged from physiological indicators (Wilson & Russell, 2003).

e Qualitative-Quantitative Integration: Thematic patterns from interviews were
systematically compared with quantitative EEG and performance findings,
providing contextual understanding and explanatory mechanisms for
observed numerical differences (Johnson et al., 2007).

e Within-Subject Consistency: The within-subjects design enabled examination
of individual-level consistency across measures, where participants showing
high cognitive load in EEG were expected to report corresponding subjective
experiences and demonstrate particular performance characteristics.

This multi-layered approach addressed potential limitations of single data sources
while providing robust evidence for conclusions about technological assistance
effects on cognitive load, user perceptions, and task outcomes (Greene, 2007). The
triangulation framework ensured findings were supported by multiple lines of
evidence, enhancing credibility and enabling a comprehensive understanding of the




complex, multi-dimensional nature of human-Al interaction in time-pressured
planning scenarios.

4. Result

This section presents the integrated findings from electroencephalographic (EEG)
recordings, task performance evaluations, and post-experiment interviews, which
collectively reveal how participants responded cognitively and subjectively to three
distinct planning conditions: (1) self-reasoning, (2) Google-assisted, and (3)
ChatGPT-assisted. The analysis is organized into three parts. Firstly, it examines
neurophysiological indicators of cognitive load across tasks. Secondly, it considers
task completion and creativity scores. Third, it explores thematic patterns derived
from interview data. Together, these components offer triangulated insight into how
digital tools modulate planning performance and mental effort.

4.1. EEG Analysis: Cognitive Load and Attentional Demands

EEG data were obtained from all 15 participants across the three task conditions,
focusing on two well-established neural markers: frontal theta (4—7 Hz), associated
with working memory and cognitive load (Figure 6), and left alpha suppression
(8-13 Hz) (Figure 7), indicative of attentional effort and cortical activation. The
analysis combined topographic visual inspection with participant-level frequency
trend summaries.

Task 1 (Self-reliant) Task 2 (Google)
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Moderate increase at F3/Fz Marked widespread increase

Figure 6. Frontal Theta Activity (4-7 Hz).



Task 1 (Self-reliant) Task 2 (Google)

Decreased at C3/P3 Marked suppression at C3/P3

Figure 7. Left Alpha Suppression (8-13 Hz).

In Task 1 (self-reasoning planning), 80% of participants exhibited increased frontal
theta activity, predominantly localized around F3 and Fz electrodes. Concurrently,
73% of participants showed alpha suppression primarily in the left posterior region
(C3/P3), consistent with high internal processing and focused attention. These
patterns (Table 3) reflect the cognitive burden of generating original solutions without
external scaffolding, a finding consistent with established EEG research linking
frontal-midline theta to working memory and top-down control (Gevins et al., 1997;
Cavanagh & Frank, 2014), and alpha desynchronization in left parietal regions to
increased task-relevant semantic retrieval and attention regulation (Klimesch, 1999;
Krause et al., 2000).

Task 1 (Self-reasoning)

cz

FC5

¥ o1

Theta: 3.5 Hz- 7.5:Hz Alpha: 75 Hz- 125 Hzlw

Frontal theta moderately increased at Fpz. | Left alpha slightly decreased at T7.

Table 3. Frontal and left brain activity patterns in Task 1.



In contrast, Task 2 (Google-assisted planning) elicited the most pronounced and
widespread EEG changes. All 15 participants demonstrated strong frontal theta
enhancement extending across F3, Fz, and F4, while 93% of participants showed
extensive alpha suppression across C3, P3, and even frontal sites. This pattern
(Table 4) suggests a combination of elevated working memory demands and
sustained attentional load due to multitasking, hyperlink navigation, and information
filtering. These EEG signatures are consistent with prior research demonstrating that
web-based information search—particularly when involving multiple tabs, scrolling,
and switching between sources—triggers significantly higher theta activity and
widespread alpha desynchronization, reflecting divided attention and working
memory overload (Zhou et al., 2022). One participant (P0O09) remarked: "With
Google, | had 20 tabs open, and it was impossible to know what was relevant." This
observation aligns closely with the EEG findings, reinforcing the conclusion that the
Google condition imposed the greatest neurocognitive demands.

Task 2 (Google)

Lz

o1

Alpha: 75 Hz- 125 Hzlw

Theta: 3.5 Hz-7.5 Hz

Frontal theta markedly increased, Left alpha markedly decreased at T7/P7.
distributed at Fp1.

Table 4. Frontal and left brain activity patterns in Task 2.

During Task 3 (ChatGPT-assisted planning), EEG activity exhibited a distinct
modulation compared to the other two conditions (Table 5). 87% of participants
demonstrated reduced frontal theta power, and 80% of participants showed partial
recovery of alpha rhythms, particularly in the P3 and C3 regions. Rather than
displaying a highly localized or overloaded neural pattern, the EEG signals in this
condition appeared more diffuse and evenly distributed, suggesting lower cognitive
strain and a shift in mental processing strategy. This modulation reflects a transition
from effortful content generation—required in Task 1 and Task 2—toward critical
evaluation and structured adaptation. The reduction in frontal theta suggests


https://yeastgenome.org/reference/S000340823

diminished reliance on working memory and executive load, while the partial alpha
rebound is commonly associated with attentional disengagement from high-demand
tasks and a return to more controlled, internally guided processing. This
interpretation is supported by prior EEG research showing that lower frontal theta
activity and partial alpha restoration often indicate reduced task difficulty and more
relaxed semantic integration during human-computer interaction (Smith et al., 2001;
Gevins & Smith, 2003). As P004 explained in the interview, “I trusted myself the
most. With ChatGPT, | had doubts about accuracy,” highlighting that although mental
effort was reduced, participants still engaged in reflective judgment and post-editing.
This nuanced experience—of lower neurocognitive workload but sustained
evaluative burden—suggests that ChatGPT altered the type of engagement rather
than removing it entirely. It enabled users to offload generative labor while still
maintaining some degree of editorial oversight, consistent with prior findings that
moderate automation reduces workload but does not eliminate the need for critical
thinking (Gevins & Smith, 2003).

Task 3 (ChatGPT)

o1

Alpha: 75 Hz- 12.5 Hzlh

Theta: 35 Hz- 7.5 Hz

Frontal theta reduced, activity less Left alpha stabilized at T7.
pronounced.

Table 5. Frontal and left brain activity patterns in Task 3.

The comparative analysis reveals a clear hierarchy of cognitive load across the three
planning conditions. Google-assisted planning elicited the most intense and widely
distributed cognitive demands, as participants were required to navigate large
amounts of information, filter sources, and make constant judgments about reliability,
all of which contributed to a heavy mental burden. In contrast, Al-assisted planning
substantially reduced working memory demands and allowed for partial recovery of
attentional resources, enabling participants to shift from effortful information
generation to evaluation and decision-making. Self-reasoning planning, while still
cognitively demanding, produced a more localized and spatially constrained
activation pattern, reflecting focused but narrower engagement rather than broad



mental strain. At the group level, a clear hierarchy of cognitive workload emerged.
The frequency of strongly increased frontal theta was highest in Task 2 (100% of
participants), followed by Task 1 (80% of participants), and lowest in Task 3 (87% of
participants showed a reduction).

A similar pattern was observed for alpha suppression: most intense in Task 2 (93%
of participants), moderate in Task 1 (73% of participants), and partially recovered in
Task 3 (80% of participants). These aggregate findings are summarized in Table 6,
providing strong neurophysiological support for the hypothesis that digital tools,
especially unstructured search engines like Google, impose elevated cognitive
demands, while Al assistance can partially relieve that burden.

EEG Marker Task 1 Task 2 (Google) Task 3 (ChatGPT)
(Self-reasoning)
Frontal Theta Increased Strongly Increased Reduced
(80%) (100%) (87%)
Left Alpha Suppressed Strongly Partial Recovery
Suppression (73%) Suppressed (80%)
(93%)
Table 6. Group summary of EEG findings.

4.2. Task Performance Scores: Completion vs. Creativity

Alongside neural data, each participant’s task outcome was independently rated on
two axes: completion and creativity. Scores ranged from 1 to 5 and were averaged
across two raters. The results are presented in Table 7.

Task Type

Completion Score
(Mean % SD)

Creativity Score
(Mean % SD)

Task 1 (Self-reasoning)

3.9+ 0.6 (Low)

43+0.5 (Low-Mid)

Task 2 (Google)

4.2 +0.7 (Mid)

3.8 £ 0.8 (Mixed)

Task 3 (ChatGPT)

4.6 +0.4 (High)

3.2+ 0.6 (High)

Table 7.

Task performance scores: completion vs creativity.




Task 3 (ChatGPT-assisted) yielded the highest completion scores (M = 4.6, SD =
0.4), followed by Task 2 (Google, M = 4.2, SD = 0.7), and Task 1 (Self-reasoning, M
=3.9,SD =0.6).

Table 10 reveals that while Al tools can substantially reduce the cognitive burden
associated with information filtering and processing, they simultaneously introduce
new forms of epistemic uncertainty and may fundamentally diminish users' sense of
personal agency and creative ownership.

Dimension Task 1 Task 2 (Google) Task 3 (ChatGPT)
(Self-reasoning)

Perceived Control Very High (4.8/5) Moderate (3.2/5) Low (2.1/5)

Trust in Output High (4.6/5) Variable (3.4/5) Questionable (2.8/5)

Sense of Ownership | Very High (4.9/5) Moderate (3.1/5) Very Low (1.9/5)

Completion Low (2.3/5) Moderate (3.5/5) Very High (4.7/5)
Efficiency

Authenticity Feeling | Very High (4.8/5) Moderate (3.3/5) Low (2.4/5)

Table 10. Subjective Experience Ratings Across Task Conditions (Scale: 1-5).

Task 1 yielded the highest creativity ratings (M = 4.3, SD = 0.5), while Task 3 scored
the lowest (M = 3.2, SD = 0.6). Task 2 fell in between (M = 3.8, SD = 0.8). The drop
in creativity during Task 3 was especially notable. Although completion improved.

4.3. Thematic Patterns from Participant Interviews

Post-experiment interviews with all 15 participants were thematically analyzed,
revealing four recurring themes: (1) Cognitive Load & Stress, (2) Trust & Information
Accuracy, (3) Control & Autonomy, and (4) Creativity vs. Efficiency. A summary of
these themes, along with representative quotes, is presented in Table 8.

Theme Description Representative Quote
Cognitive Perceived mental “With Google, | had 20 tabs open, and it was
Load & demand, time pressure, | impossible to know what was relevant.” — P0O09
Stress and disorganization
Trust & Perceived credibility of | “I trusted myself the most. With ChatGPT, | had
Information the tools used doubts about accuracy.” — P004
Accuracy




Control & User's sense of agency | “In the first task, | had full control. It was hard,

Autonomy during task execution but it was my own work.” — P005
Creativity vs | Tradeoff between “ChatGPT was efficient, but | didn’t feel
Efficiency originality and task creative at all. It was like filling a form.” — P014

efficiency across tools

Table 8. Thematic analysis from post-experiment interviews.

The most frequently cited experience of mental strain occurred during Task 2.
Thirteen participants described this condition as the most stressful and disorienting.
For instance, PO09 recalled, "With Google, | had 20 tabs open, and it was impossible
to know what was relevant." The perception of time pressure and information
overload was consistent with EEG findings showing the highest frontal theta and
alpha suppression in Task 2. The consistency of frontal theta patterns in Task 2, in
particular, underscores the cumulative cognitive cost of multitasking and high
information density. Trust in tool reliability emerged most strongly during Task 3.
While ChatGPT was praised for convenience, six participants expressed concerns
about its factual accuracy. P004 noted, "l trusted myself the most. With ChatGPT, |
had doubts about accuracy." This ambivalence may explain why frontal theta did not
fully normalize during Task 3—participants remained cognitively engaged to monitor
and verify Al-generated suggestions.

Task 1 fostered the highest sense of agency. Eleven participants described it as the
condition where they felt most "in control," despite its difficulty. PO0S5 stated, "In the
first task, | had full control. It was hard, but it was my own work." This perceived
autonomy aligns with the elevated but localized EEG activation observed in Task 1.
A majority of participants (10 out of 15) commented on the creativity-efficiency
tradeoff, particularly in Task 3. Although ChatGPT enabled quick progress,
participants reported a sense of detachment from the final product. P014 reflected,
“ChatGPT was efficient, but | didn’t feel creative at all.” This theme resonates with
the performance data, where Task 3 showed the highest completion score but the
lowest creativity rating. It suggests that although Al tools streamline execution, they
may limit opportunities for exploration and divergent thinking—an effect worth
considering in educational design and work settings where creativity is valued.

5. Discussion

This comprehensive study explored the multifaceted effects of different digital
support modes on users' cognitive load, engagement, sense of control, and creativity
within the context of structured planning tasks. By employing a methodologically
robust approach that triangulated EEG neurophysiological data, quantitative task
performance metrics, and qualitative post-task interview insights, several nuanced



and theoretically significant findings emerged regarding how artificial intelligence and
traditional search tools fundamentally shape human cognitive effort and experiential
quality.

5.1. Addressing the Research Questions

RQ1: How does the mode of digital assistance (self-reasoning), Google, ChatGPT)
impact users' cognitive load and mental workload during problem-solving tasks?

The neurophysiological and self-reported findings collectively revealed a consistent
gradient of cognitive load intensity across the three conditions (Table 9). EEG results
showed that Task 2 (Google-assisted) elicited the strongest frontal theta activity and
the most extensive alpha suppression, patterns commonly associated with elevated
working memory demands and attentional strain (Klimesch, 1999; Cavanagh &
Frank, 2014). This condition also received the highest subjective difficulty rating
(4.6/5), with 87% of participants reporting high mental effort. These converging data
suggest that despite the familiarity of using search engines, the fragmented nature of
web navigation—requiring continuous judgment, filtering, and source
evaluation—can overwhelm users under time constraints.

Task Condition EEG Theta Alpha Subjective | Participants

Activity Suppression Difficulty | Reporting High

Rating Mental Effort

Task 1 Moderate Suppression at | 3.7/5 8/15 (53%)
(Self-reasoning) increase at C3/P3in 73%

F3/Fz (80% of of participants

participants)
Task 2 Strong increase | Extensive 4.6/5 13/15 (87%)
(Google-assisted) at F3/Fz/F4 bilateral

(100% of suppression at

participants) C3/P3/F3 (93%

of participants)

Task 3 Reduced or flat | Partial alpha 2.8/5 4/15 (27%)
(ChatGPT-assisted) | theta at frontal recovery at

sites (87% of C3/P3in 80%

participants) of participants

Table 9. Comparative Analysis of Cognitive Load Indicators Across Task Conditions.

While these findings align with existing research on information overload and
decision complexity (Eppler & Mengis, 2008), the present study extends this
knowledge by offering real-time EEG-based evidence of how such overload
dynamically manifests during cognitively intense, goal-directed planning. For
example, participants' reports such as “Every click led to ten more decisions” (P012)

and “| felt like | was drowning in information” (P0O07) corroborated the




neurophysiological load patterns, providing a rare multimodal validation of classic
overload theories in the context of modern digital tools.

By contrast, Task 1 (self-reasoning planning) induced moderate but localized
increases in theta and left-lateralized alpha suppression—markers of focused
cognitive engagement often associated with internal reasoning and effortful retrieval
(Smith et al., 2001). This task was rated as moderately difficult (3.7/5), with 53% of
participants reporting high mental effort. Notably, despite comparable neural load to
Task 2 in some individuals, Task 1 was often described as more "controlled" or
"personally directed", suggesting that mental effort alone does not always equate to
negative experience.

Task 3 (ChatGPT-assisted) presented a distinctly different pattern. EEG data showed
reduced theta power and partial alpha rebound in most participants, indicative of
lower working memory demands and attentional release (Gevins & Smith, 2003).
Subjectively, this condition was rated the least difficult (2.8/5), with only 27%
reporting high cognitive effort. However, the reduced neural activity also
corresponded with reduced feelings of ownership and agency. Several participants
described their interaction with ChatGPT as “efficient but unengaging,” and one
remarked, “I just picked and tweaked what it gave me” (P014). These findings reveal
a critical new insight: cognitive load reduction—often framed as a UX benefit—may
come at the cost of user engagement and perceived authorship. This challenges the
simplistic assumption that lower effort universally leads to better experiences.

RQ2: How does the use of Al (ChatGPT) affect users' perceived control, trust, and
performance compared to traditional tools?

Participants consistently associated Task 1 (self-reasoning planning) with high levels
of perceived control and psychological ownership, despite acknowledging its
inherent difficulty (Figure 8). This finding strongly supports self-determination theory
(Deci & Ryan, 2000), which posits that autonomy enhances intrinsic motivation and
engagement. As P005 reflected: "In the first task, | had full control. It was hard, but it
was my own work."




TRUST AND CONTROL DYNAMICS

High Control Medium Control Low control
High trust Variable Trust High Efficiency

Task 1 Task 2 Task 3
Self-reliant Google Search ChatGPT

Assisted
“My work” “Chaotic”

“Difficult but “Scattered” “Efficient but

owned” "Overwhelming” impersonal”

Figure 8. Conceptual Model of Trust-Control Dynamics Across Task Conditions.

Conversely, participants characterized Google-assisted planning as fundamentally
overwhelming and chaotic, describing experiences of cognitive fragmentation and
decision paralysis. The traditional web search paradigm, while familiar, imposed
substantial cognitive filtering demands that left participants feeling simultaneously
empowered by access to vast information resources yet frustrated by the burden of
synthesis and evaluation. This paradox is well-documented in the information
science literature as the "paradox of choice" (Schwartz, 2004) and information
foraging theory (Pirolli & Card, 1999), which describes how the abundance of
information can lead to inefficient search behaviors and cognitive overload.

ChatGPT-assisted planning presented a fascinating paradox of efficiency coupled
with psychological distance. While ChatGPT facilitated superior task completion
rates, several participants expressed concerns about trust, accuracy, and
authenticity. P0O04's comment exemplifies this tension: "l trusted myself the most.
With ChatGPT, | had doubts about accuracy, but also about whether the ideas were
really mine anymore." These findings reveal that while Al tools reduce cognitive
burden, they simultaneously introduce epistemic uncertainty and may diminish users'
sense of personal agency, aligning with research on automation bias (Parasuraman
& Riley, 1997) and Al transparency concerns (Ribeiro et al., 2016).

RQ3: What are the implications of tool choice on task creativity and user experience
quality?

Creativity scores showed a clear decline in the ChatGPT-assisted condition
(Task 3; M= 3.2, SD = 0.6) compared with both the self-reasoning condition
(Task 1; M =4.3, SD = 0.5) and the Google-assisted condition (Task 2; M = 3.8,



SD = 0.8), even though Task 3 achieved the highest efficiency ratings (Figure
9). Across task conditions, creativity and efficiency scores exhibited a strong
inverse relationship (r=-0.87, p < .01), indicating that higher efficiency was
associated with lower creativity within the scope of this experimental context.
This pattern is consistent with established theories of creativity that emphasize
the role of cognitive effort, personal engagement, and intrinsic motivation in
creative performance (Amabile, 1996). Qualitative interview data further
contextualized this trade-off: several participants described Al-generated plans
as structurally complete yet experientially constraining. For instance, P0O14
noted that while ChatGPT significantly reduced effort, the process felt less
personally expressive, characterizing it as “like filling out a standardized form
rather than planning something personal.” Taken together, these findings
suggest that, in this study, Al-assisted planning supported efficient task
completion but was associated with reduced creative engagement. Rather than
indicating a universal limitation of Al systems, the observed trade-off highlights
how highly structured outputs may shape users’ creative involvement under
time constraints, aligning with prior discussions on automation-related
constraints on exploratory and generative thinking (Parasuraman & Riley,
1997; Stokes, 2005).

Creativity Score
T Legend: @ = Task condition position
Inverse relationship: r = -0.87, p < 0.01

5.0
@ Task 1(Self-reliant)
4.5
4.0 |
@ Task 2 (Google)

35
3.0 @ Task 3 (ChatGPT)
2.5 1
2.0 —> Efficiency Score

20 3.0 4.0 5.0

Figure 9. Creativity vs efficiency trade-off analysis visualization.

5.2. Contributions to Theory and Practice

5.2.1. Theoretical Implications

The results of this study contribute to ongoing theoretical discussions on the
cognitive and emotional consequences of digital assistance. While prior research



has emphasized the utility of digital tools in reducing cognitive effort (Norman, 2013;
Risko & Gilbert, 2016), our findings indicate that such reductions—particularly in the
ChatGPT condition—may not correspond with increased engagement or creativity.
Instead, the observed dissociation between low EEG-indicated cognitive load and
reduced creative satisfaction highlights an underexamined trade-off. This challenges
assumptions embedded in cognitive load theory (Sweller, 2011), which often link task
ease with improved experience quality. As summarized in Table 11, this study
extends existing frameworks by revealing gaps between predicted benefits of
cognitive offloading and user-perceived autonomy. While ChatGPT's structured
support was effective in reducing frontal theta and alpha suppression levels,
participants frequently reported diminished control and personal investment. These
experiences align with theoretical models of automation-induced control loss
(Sheridan & Verplank, 1978) and reduced metacognitive regulation (Schraw, 2001).

In contrast, the Google-assisted condition preserved more open-ended navigation
and required greater filtering effort, allowing for exploratory behavior. This supports
earlier findings on serendipity and cognitive stimulation in search-based interfaces
(André et al., 2009), suggesting that the cognitive complexity of a tool may support
rather than hinder deeper engagement, depending on task context. Participants’
reflections—such as comparing ChatGPT outputs to “filling a form”—reinforce the
concern that automation may streamline tasks at the expense of creativity and
agency. Taken together, these patterns suggest that while task simplification remains
valuable, it should not be conflated with experiential quality. Particularly in tasks
requiring generative thinking, such as meal and exercise planning, user engagement
may benefit from moderate cognitive challenge and opportunities for ideation. The
inverse relationship between task efficiency and creativity observed in this study
merits further theoretical attention.

Theoretical Traditional The Empirical Theoretical
Framework Prediction Findings Implications
Cognitive Load Lower load — Better | Lower load # Need to distinguish

Theory performance Better experience load types

Extended Mind

Theory

Tool integration
enhances cognition

Integration may
reduce ownership

Boundary conditions
needed

Automation Theory

Efficiency improves

Efficiency reduces

Trade-off

outcomes creativity mechanisms exist
UX Design Ease of use Ease may reduce Complexity has
Principles improves engagement benefits
satisfaction
Table 11. Theoretical Frameworks and Empirical Challenges.




5.2.2. Practical Contributions for UX and Cognitive Tool Design

From a design perspective, the findings offer actionable insights for human-centered
development of Al-integrated interfaces. The results demonstrate that cognitive load,
while an important metric, is not a comprehensive indicator of positive user
experience. Lower mental effort did not automatically yield higher satisfaction,
creativity, or a sense of ownership. This implies that design strategies should extend
beyond usability-focused optimization and actively consider how interface structures
influence user agency, decision-making autonomy, and perceived authorship of
outcomes (Figure 10). Moreover, participants expressed consistent concern about
the opacity of Al outputs. While ChatGPT facilitated efficient task completion, its lack
of source visibility and rationale limited users' ability to verify or adjust responses.
This echoes broader calls for explainable Al (Miller, 2019) and supports the
development of tools that promote informed trust calibration. Rather than fostering
passive consumption of generated content, systems should allow for modularity,
revision, and co-construction to maintain user engagement.

Human Agency

High
Collaborative Empowered
Creativity Efficiency
Overwhelming Passive
Low Chaos Automation
—> Automation Support
Low High

Figure 10. Design Framework for Balancing Automation and Human Agency.

Finally, this study contributes methodologically by demonstrating the value of a
triangulated, multi-modal research approach. By integrating EEG measures,
behavioral performance, and interview-based insights, we were able to detect subtle
discrepancies between observable task behavior and subjective experience. This
approach complements traditional usability testing and can help designers uncover
latent cognitive and emotional effects of automation (Hornbaek, 2006). Future design
evaluations may benefit from adopting similar frameworks to more fully understand
how intelligent systems shape not only task outcomes but also the underlying quality
of user interaction.




5.2.3. Design Recommendations

This study offers several important contributions to user experience research and the
design of Al-augmented cognitive tools. First, the findings demonstrate that reduced
cognitive load—as indicated by EEG signals—is not necessarily associated with
higher engagement or creative fulfillment. This challenges dominant assumptions in
UX design that emphasize task simplification as a universal good (Sweller, 2011). In
the Al-assisted condition (Task 3), users completed tasks with greater efficiency but
reported diminished creative ownership and reduced perceived control. These
observations align with theoretical perspectives on automation complacency and
control-loss, and highlight the need for human-centered design approaches that
balance automation with autonomy (Shneiderman, 2020; Amershi et al., 2019).
Secondly, the study supports the argument that tool design must not only reduce
workload but also preserve meaningful interaction and user agency. Participants
often described ChatGPT’s output as structurally complete but lacking in
personalization or emotional investment. To address this, design strategies should
incorporate modularity, transparency, and opportunities for user revision. For
example: Explainable Al components—such as source traceability, confidence
indicators, and editable reasoning steps—could help users validate and adjust
generated outputs (Miller, 2019). Co-creation interfaces could allow Al to provide
scaffolded suggestions while giving users the flexibility to reorganize, reject, or
supplement content, encouraging a sense of shared authorship rather than passive
consumption. Reflective prompt systems may nudge users to articulate their
reasoning, promoting self-awareness and deeper engagement during planning or
decision-making. Finally, the study demonstrates the value of triangulated,
multi-modal evaluation methods—integrating EEG signals, task performance data,
and qualitative interviews—to assess user experience beyond surface-level usability
metrics (Hornbaek, 2006).

5.3. Limitations and future research

Despite its contributions, the study faces several limitations that constrain the
generalizability of its conclusions. The relatively small and homogeneous sample (N
= 15), composed exclusively of university students with similar linguistic and cultural
backgrounds, limits statistical power and restricts the exploration of individual
differences, such as prior tool familiarity, cognitive style, or cultural orientation.
Future studies should expand participant diversity and incorporate cross-cultural
comparisons, given known variations in how people across cultures experience trust,
autonomy, and collaboration with digital systems (Nisbett et al., 2001). Moreover, the
experimental task focused solely on weekly meal and exercise planning—a domain
chosen for its everyday relevance and mix of structure and creativity. While this task
provided a suitable context for exploring planning behavior under time constraints, its
scope is narrow. Future research should extend this paradigm to a broader set of
creative or analytical tasks, including academic writing, collaborative design,
strategic decision-making, or content curation. These domains may elicit different




emotional responses, planning strategies, or social dynamics, which could influence
how Al tools are perceived and used. Longitudinal studies are also needed to
explore how repeated use of Al tools affects long-term cognitive habits and decision
strategies. Prior research has raised concerns about digital amnesia and
over-reliance on external cognitive support (Sparrow et al., 2011; Storm & Stone,
2015), suggesting that habitual Al use may gradually reshape users’ engagement
patterns, memory dependence, and confidence in self-initiated reasoning.

Lastly, future research could investigate adaptive Al systems that respond
dynamically to users’ cognitive and emotional states. With EEG-informed
personalization or multimodal tracking, such systems could modulate assistance
levels in real time—balancing cognitive relief with opportunities for deeper
engagement and user growth.

6. Conclusion

This study explored the cognitive and experiential effects of digital assistance tools
by comparing three problem-solving conditions: self-reasoning planning,
Google-assisted planning, and ChatGPT-assisted planning. Through the integration
of neurophysiological EEG data, task performance assessments, and post-task
interview analyses, the research aimed to understand how varying levels of
technological mediation influence users’ mental workload, creative engagement, and
perceived control. The EEG results revealed differentiated cognitive load profiles
across conditions. The Google-assisted task elicited the highest and most
widespread frontal theta activity alongside extensive alpha suppression, reflecting
elevated working memory demands and attentional intensity. The ChatGPT-assisted
task showed comparatively reduced theta activity and partial alpha rebound,
suggesting lowered cognitive strain. The self-reasoning condition presented
moderate but localized neural activation, indicating internally managed information
processing. These distinct patterns demonstrate how each tool alters the cognitive
configuration required to complete planning tasks. Performance measures further
contextualized these neural findings. Task completion rates were highest in the
ChatGPT-assisted condition, reflecting the tool’s capacity to support structural and
procedural aspects of planning. However, creativity scores were highest in the
self-reasoning condition and lowest in the Al-assisted condition, implying that
efficiency gains may be accompanied by constraints on ideational fluency. This
suggests a shift in user cognition from active content generation toward evaluative
synthesis when utilizing Al-generated suggestions. Interview data contributed an
interpretive layer to these quantitative patterns. Participants described Google-based
planning as effortful due to the fragmentation and volume of search results. The
self-reasoning condition, though cognitively demanding, was perceived as fostering
stronger ownership and autonomy. In contrast, while the ChatGPT-assisted condition
was associated with lower mental burden and more rapid task progression,



participants expressed concerns regarding diminished control, limited transparency
of information sources, and a weaker sense of creative contribution.

Taken together, these findings suggest that while digital tools designed to reduce
cognitive effort can facilitate task completion, they may simultaneously diminish
users' subjective engagement and perception of authorship. In particular, structured
Al outputs, though helpful in guiding content formulation, may limit the extent to
which users feel involved in the ideation process. This has implications for the design
of intelligent systems that aim to balance cognitive support with meaningful user
participation. The present study makes several contributions. First, it provides
empirical evidence—both behavioral and neurophysiological—on how assistance
tools differentially shape users' cognitive states. Second, it reframes cognitive load
not solely as a negative outcome to be minimized, but also as a potential indicator of
active engagement and cognitive autonomy. Third, it identifies trust, control, and
creative freedom as central design considerations that extend beyond traditional
metrics of usability or performance. Several limitations should be acknowledged. The
sample size was limited, and the participant group was relatively homogenous in
terms of age, education level, and cultural background. Moreover, the tasks focused
exclusively on a single domain—meal and fithess planning—which may not reflect
the demands of more complex or collaborative tasks. EEG was selected for its high
temporal resolution, but it does not offer spatial precision comparable to other
neuroimaging techniques. These factors constrain the extent to which findings may
be generalized to broader populations or use cases. Future research should expand
the task variety and participant demographics, as well as explore the effects of
different Al design parameters, including levels of transparency, personalization, and
interactivity. Longitudinal studies are also warranted to examine how repeated use of
Al-assisted tools might influence cognitive strategies and perceived competence
over time.

In conclusion, this study highlights the importance of adopting a more nuanced,
user-centered approach to the design of Al-supported decision tools. While reducing
mental workload remains a valuable objective, it must be weighed against potential
impacts on autonomy, engagement, and creativity. Designing systems that facilitate
collaboration rather than substitution may offer a more sustainable path toward
supporting human cognitive processes in technology-enhanced environments.
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8. Appendix

8.1. EEG data (P001-P015):

Participant Task 1 Task 2 (Google) Task 3 (ChatGPT)
(Self-reasoning)
T8 T7
Theta: 35 Hz-7.5 Hz Theta: 3.6 Hz- 7.5 Hz Theta: 36 Hz-7.5 H:’
Frontal theta Frontal theta slightly | Frontal theta was
markedly increased, | increased at Fp1. reduced at Fp1/Fp2.
P001 .
localized at
Fp2/Fpz.

o1

Alpha: 7.5 Hz. 12.5 Hz

§ o1

Alpha: 7.5 Hz- 12.5 Hzl

o1

Alpha: 7.5 Hz- 12.5 Hzlw

Left alpha markedly
decreased at F7/T7.
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decreased at C3.
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markedly increased, | reduced, activity
distributed at Fp1. less pronounced.
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(Self-reasoning)
FC5 FC5 FC& j FC5

: o
eta: 3.5 Hz- 7.5 Hz

Frontal theta Frontal theta Frontal theta was
increased at F3/Fz. | markedly increased | slightly reduced.

P003 and was widely

distributed.

Bt

Pz

12.5 Hz b

Pz

Apha: 7.5 Hz - 12.5 Hzy

17.6 Ha - 12.5 Hzl

Left alpha
moderately
decreased.

Left alpha was
markedly
suppressed at FC5.

Left alpha slightly
recovered at FC5.




Participant

Task 1
(Self-reasoning)

Task 2 (Google)

Task 3 (ChatGPT)

P004

T8

Theta: 35 Hz- 7.5 Hz

o
Theta: 3.5 Hz- 7.5 Hz

T8

Theta: 3.5 Hz- 7.5 Hz

Frontal theta
moderately
increased at Fpz.

Frontal theta
markedly increased
and was widely
distributed.

Frontal theta was
reduced at Fp2/Fpz.

Fpi

Alpha: 7.5 Hz- 12.6 Hz)

Alpha: 7.5 Hz- 12.5 Hz(

Alpha: 7.5 Hz- 12.5 Hz/

Left alpha
decreased at FC3.

Left alpha
suppressed at FC3.

Left alpha partially
rebounded.




Participant

Task 1
(Self-reasoning)

Task 2 (Google)

Task 3 (ChatGPT)

P005

Theta: 356 Hz-7.5 Hz

-
Theta: 3.5 Hz- 7.5 Hz

FCB

T8

=
Theta: 3.5 Hz- 7.5 Hz

Frontal theta
increased.

Frontal theta
markedly increased,
with a broad
distribution.

Frontal theta was
slightly reduced.

Alpha: 7.5 Hz- 12.5 Hz¥

Alpha: 7.5 Hz - 12.5 Hzy

Alpha: 7.5 Hz- 12.5 Hz¥

Left alpha
decreased.

Left alpha was
markedly
suppressed at FC3.

Left alpha slightly
recovered.




Participant Task 1 Task 2 (Google) Task 3 (ChatGPT)
(Self-reasoning)
Fo
Thm:a.GHz-Tﬁl-‘I: Thm:B.ﬁHz-?,ﬁHz. Theta: 35 Hz- 7.5 Hz
Frontal theta Frontal theta Frontal theta
moderately markedly increased, | reduced.
P006 increased. with a broad
distribution.

Alpha: 7.6 Hz- 12.5 Hzy

Alpha: 7.5 Hz- 12.5 Hzl

Alpha: 7.5 Hz- 12.5 Hzy

Left alpha slightly
decreased.

Left alpha
suppressed.

Left alpha partially
rebounded.




Participant

Task 1

(Self-reasoning)

Task 2 (Google)

Task 3 (ChatGPT)

P007

T8

_
Theta: 3.5 Hz- 7.5 Hz

Theta: 35 Hz- 7.5 Hz

Frontal theta
increased at Fpz.

Frontal theta

markedly increased.

Frontal theta
reduced.

Alpha: 7.5 Hz - 12.5 Hzb'

Fp1

Alpha: 7.6 Hz - 12.5 Hzl

Alpha: 7.6 Hz- 12.5 Hzl

Left alpha

suppressed.

Left alpha markedly
decreased at P9.

Left alpha slightly
recovered.




Participant Task 1 Task 2 (Google) Task 3 (ChatGPT)
(Self-reasoning)
T v T8 hrd
' F
Theta: 35 Hz-7.5 H: Theta:35Hz-7.5 H: Theta: 3.5 Hz- 7.5 Hz
Frontal theta Frontal theta Frontal theta shows
moderate increase. marked increase, a slight reduction.
P008

widespread.

Alpha: 7.5 Hz- 12.5 Hz b

Alpha: 7.6 Hz - 12.5 Hz i

Alpha: 7.5 Hz- 12.5 HzW

Left alpha slightly
reduced.

Left alpha was
suppressed at T7.

Left alpha partially
restored.




Participant

Task 1
(Self-reasoning)

Task 2 (Google)

Task 3 (ChatGPT)

P009

Theta: 3.5 Hz- 7.5 Hz

Theta: 35 Hz- 7.5 Hz

FCs

T7

Theta: 35 Hz- 7.5 Hz

Frontal theta
strongly increased,
localized at F3/Fz.

Frontal theta very
strongly increased
and was widely
distributed.

Frontal theta is
lower.

¥ o1

Alpha: 7.5 Hz- 12.5 Hzl'

Alpha: 7.5 Hz- 12.5 Hz i

Alpha: 7.5 Hz - 12,5 Hzl'

Left alpha markedly
decreased at F7/T7.

Left alpha was
markedly
suppressed across

the left hemisphere.

Left alpha slightly
recovered.




Participant Task 1 Task 2 (Google) Task 3 (ChatGPT)
(Self-reasoning)
FC5 FCB FG§ FCB FC5
ThOB::i-iHR-?-ﬁﬁ: ‘I'Mu::l.ﬁHz-?.ﬁH‘z(
Frontal theta Frontal theta Frontal theta
moderately markedly increased, | reduced.
P010 increased at widespread.
Fpz/Fp1.

R

e s

pha: 7.5 Hz - 12.5 Hay

Apha: 7.5 Hz - 12.5 Hz )

Left alpha
decreased.

Left alpha markedly
decreased at FC5.

Left alpha partially
recovered.




Participant

Task 1
(Self-reasoning)

Task 2 (Google)

Task 3 (ChatGPT)

P011

8
" F

__
Theta: 3.5 Hz- 7.5 Hz

T8
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markedly increased,
localized at Fpz.

Frontal theta
increased, widely
distributed.
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Fpl
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P013 increased at with a broad
Fpz/Fp1. distribution.
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Left alpha
decreased.

Left alpha
suppressed.

Left alpha partially
recovered.
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Task 1
(Self-reasoning)

Task 2 (Google)

Task 3 (ChatGPT)

P014

T8

&
Theta: 3.6 Hz- 7.5 Hz

T8

4
Theta: 35 Hz- 7.5 Hz

T8

4
Theta: 3.5 Hz- 7.5 Hz

Frontal theta
increased at
Fp2/Fp1.

Frontal theta
markedly increased
and was
widespread.

Frontal theta
reduced.

Alpha: 7.5 Hz - 12.5 Hz W

Alpha: 7.5 Hz- 12.5 Hz

Left alpha
decreased.

Left alpha was
markedly
suppressed.

Left alpha partially
recovered.




Participant Task 1 Task 2 (Google) Task 3 (ChatGPT)
(Self-reasoning)
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Frontal theta Frontal theta very Frontal theta
increased at strongly increased reduced.
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Alpha: 7.5 Hz- 12,5 Hz'

Left alpha
decreased at
C3/FC5.

Left alpha was
markedly
suppressed and
broad.

Left alpha partially
recovered.




8.2. Post-experiment interview theme coding

Participant

Perceived Cognitive Load and Differences

P001

Task 1 - Hardest (self-reasoning, calorie details unknown).
Task 2 - Distracting with ads.
Task 3 - Feel easier, fine-tuning Al output.

P002

Task 2 - Hardest (too many results).
Task 1 - Stressful (energy, knowledge missing).
Task 3 - Feels easier but requires prompt adjustment.

P003

Task 1 - Hardest (balancing experience and goals).
Task 2 - Hardest under the time limit.
Task 3 - Content not trustworthy.

P004

Task 1 - Hardest (unfamiliar with healthy food).
Task 2 - Required browsing multiple sites.
Task 3 - Feel very easy with Al.

P005

Task 2 - Hardest (feel exhausted from filtering the information).
Task 1 - Feels stressful.
Task 3 - The initial plan is too basic.

P006

Task 1 & 2 - Challenging.
Task 2 - Worst with camping scenario.
Task 3 - Feel easier but uninspiring meals.

P007

Task 2 - Feel the most frustrating (filtering, sign-ups).
Task 1 - Required high creativity.
Task 3 - Feel it is the easiest.

P008

Task 2 - Hardest (precise calorie calculation).

Task 1 - | only listed the basic meals.

Task 3 - Feel more at ease with ready plans and make adjustments to
them.

P009

Task 1 - Hardest (not sure where to start, a bit overwhelming).
Task 2 - Easier with Google and search for the information.
Task 3 - Mainly formatting.

P010

Task 1 - Feel my brain is a mess, stressful.
Task 2 - | got quick Google answers, and | feel better.
Task 3 - Easy to use, | have much more time to make the outcome better.

P011

Task 2 - Hardest (info filtering time), stressful.
Task 1 - Easier to just follow own ideas.
Task 3 - Easiest.

P012

Task 1 - Hardest (uncertain about calories).
Task 3 - Easiest and fastest, disliked Google's conflicting information.

P013

Task 1 - Hardest (time-pressured to complete the week plan).
Task 3 - Uncreative and untrustworthy.
Task 2 - More comfortable.




P014

Task 2 - Hardest (fragmented Google info, time-consuming).
Task 3 - Faster under pressure.

P015 Task 3 - Hardest (explaining prompts + accuracy doubts).
Task 1 - Fastest with own knowledge.
Participant | Most Challenging / Frustrating Aspects
P001 Task 1 - Hard to finish in time.
Task 2 - Hard due to a lack of information on camping exercises.
P002 Task 2 - Overwhelmed by too many results.
P003 Task 2 - Difficult within a limited time.
Task 1 - Calorie calculation is challenging.
P004 Task 1 - Lunch planning stuck.
Task 3 - Accuracy doubts.
P005 Task 2 - Info overload.
Task 3 - Lacked details.
P006 Task 2 - Questions are difficult for camping.
Task 3 - Impractical plans.
P007 Task 2 - Filtering info is frustrating.
P008 Task 2 - Time wasted calculating calories.
P009 Task 1 - Unfinished days; Task 3 confusing new recipes.
P010 Task 1 - Confusing, Task 2 more confident.
PO11 Task 2 - Filtering is the most frustrating.
P012 Task 1 - Difficulty in estimating food calories.
P013 Task 1 - Stressful and uncertain if realistic.
P014 Task 2 - Browsing fragmented info is frustrating.
P015 Task 3 - Frustrating when the Al gave fake and wrong information.




Participant | Favorite Parts and Integration Ideas

P001 Use ChatGPT first, then Google to verify details.

P002 Use ChatGPT for inspiration, then verify with Google.

P003 | would use ChatGPT for inspiration and then verify via Google.

P004 Liked ChatGPT’s ease and Google’s credibility; combine both.

P005 Use ChatGPT, then adjust with experience.

P006 Would use Task 1 for creativity, ChatGPT for numbers, and Google for
checks.

P007 Would combine: own ideas — Google opinions — ChatGPT refine.

P008 | would start with my own ideas, use Google to check, and use Al to
optimize.

P009 | liked the simple ingredients in Task 1; ChatGPT was only referenced.

P010 Preferred Google for searching and filtering.

PO11 | would combine my own ideas — ChatGPT — Google verification.

P012 | would use ChatGPT for inspiration and then filter by my own judgment.

P013 | prefer d(_)ing research with Google, which is more accurate and
empowering.

P014 Would rely on Al under time, then refine.

P015 Relied on own knowledge, Al only reference.




Participant

Sense of Control

P001 Most control in Task 3.

P002 Most control is in Task 1, and least in Task 3.
P003 Most control in Task 2.

P004 Most control in Task 2.

P005 Most control in Task 1.

P006 Most control in Task 1.

P007 Most control is in Task 1, and the least in Task 2.
P008 Most control in Task 1.

P009 Most control in Task 1.

P010 Most control is in Task 2, and the least in Task 3.
PO11 Most control is in Task 1, and the least in Google.
P012 Felt in control using Al but kept a creative role.
P013 Most control in Task 2.

P014 Felt limited control with Al despite its usefulness.

P015

Most control in Task 1.




Participant

Helpfulness for Problem-Solving and Creativity

P001 Task 3 - Best for detailed output and creativity.
P002 Task 1 - Best for problem-solving.

P003 Task 2 - Best for thinking and decision-making.
P004 Task 2 - Best for reliable information.

P005 Task 3 - Best for quick ideas.

P006 Task 1 - Best for creativity.

P007 Task 3 - Efficient, combined with Task 1 for creativity.
P008 Task 1 - Most creative; Task 3 only supportive.
P009 Task 1 - Innovative with knowledge, Al secondary.
P010 Task 2 - Best (active decision-making).

PO11 Task 3 - Best for filtering info and sparking creativity.
P012 Task 3 - Helpful for creativity and saving effort.
P013 Task 2 - Best for creative selection.

P014 Task 3 - Most helpful under stress.

P015 Task 1 - Most helpful for problem-solving.




Participant | Trustin Al

P001 Trusted ChatGPT fully, did not verify.

P002 Skeptical of ChatGPT, results look good, but may be useless.
P003 Did not trust ChatGPT, vague answers.

P004 | relaxed with ChatGPT and did not consider accuracy until later.
P005 Trusted ChatGPT but noted it may not always be accurate.
P006 | felt ChatGPT lacked human touch and was not trustworthy.
P007 Low trust in Al, aware that it makes mistakes.

P008 Medium trust in Al, needed to have their own knowledge.

P009 Saw Al as a reference only.

P010 | did not trust Al much and skipped the middle decision-making step.
PO11 | did not trust Al fully, so | relied on Google to confirm.

P012 Trusted Al fairly strongly.

P013 | did not trust Al and found the suggestions useless.

P014 Partially trusted Al only under necessity.

P015 | did not trust Al and found errors annoying.




Participant | Impact of Time Constraints and Trade-offs

P001 Task 1 - Difficult under time pressure.

P002 Task 2 - Overwhelming under the time limit.

P003 Task 2 - Hardest under time pressure.

P004 Task 2 - Browsing is time-consuming under time pressure.
P005 Task 2 - Overload amplified under time pressure.

P006 Task 2 - Difficult with the scenario and time.

P007 Task 2 - Blocked progress under the time limit.

P008 Task 1 - Unfinished calorie counting due to time.

P009 Task 1 - Incomplete within time.

P010 Task 3 - Felt ChatGPT skipped thinking, but was fast under the time limit.
P011 The 20-minute limit forced very quick decisions.

P012 Time pressure pushed preference for ready Al templates.
P013 Task 1 - The pressure is very strong under the time limit.
P014 Choose Al under time pressure to avoid blanks.

P015 Choose to rely on my own experience over time.
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