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Abstract 

In an era where intelligent tools increasingly shape everyday decision-making, this 
study explores how varying forms of digital assistance—self-guided thinking, 
traditional search engines, and generative AI—affect users’ cognitive load, sense of 
control, trust, and creativity. To examine this, we designed a within-subjects 
experiment where 15 participants completed three time-constrained planning tasks: 
one unaided, one using Google, and one supported by ChatGPT. We employed a 
triangulated method combining EEG data (frontal theta and left alpha), task 
performance scores (completion and creativity), and post-task interviews to capture 
both neurophysiological and experiential dimensions. Results showed that 
Google-assisted tasks triggered the highest cognitive workload, reflected in 
widespread EEG activity and frequent interview reports of fatigue and frustration. 
Self-resoning tasks elicited moderate but focused effort, supporting a higher sense of 
creative ownership. In contrast, ChatGPT significantly reduced EEG markers of 
mental effort, while many participants felt less in control and skeptical of the AI’s 
reasoning transparency. While ChatGPT improved task efficiency, its use raised 
concerns about over-reliance and diminished user agency—echoing existing 
literature on automation bias and human-AI trust dynamics. This study highlights a 
critical design insight: reduced cognitive effort does not automatically lead to a better 
user experience. Aligning with human-centered AI design principles, we argue for 
interactive systems that balance automation with user autonomy, particularly in 
complex tasks requiring judgment and personalization. These findings offer practical 
implications for UX design and AI interface development: in addition to streamlining 
tasks, tools should be designed to sustain engagement, foster creativity, and 
preserve a meaningful sense of control. 

 

1.​Introduction 

In recent years, the integration of artificial intelligence (AI) into everyday 
decision-making tools has transformed the way humans engage with complex 
cognitive tasks. Systems such as ChatGPT can produce structured plans, explain 
technical concepts, and simulate personalized advice within seconds. These 
capabilities provide unprecedented efficiency, however they also raise critical 
questions in cognitive and user experience research: What happens to human 
cognition when intelligent systems take over key aspects of problem solving? And 
what trade-offs emerge between lowered mental effort and diminished engagement, 
autonomy, or trust? Prior studies indicate that AI assistance can reduce cognitive 
load by simplifying information processing, generating drafts, or filtering content, 
making once-demanding tasks more accessible and efficient. 



However, reductions in cognitive effort may carry hidden costs. Empirical evidence 
demonstrates a significant negative correlation between frequent AI tool usage and 
critical thinking abilities, mediated by increased cognitive offloading (Gerlich, 2025). 
Neurophysiological data from MIT provide further support that participants using 
ChatGPT consistently performed worse across neural, linguistic, and behavioral 
measures, and exhibited the weakest brain connectivity compared to other 
conditions (Kosmyna et al., 2025). A systematic review of educational applications 
reinforces these findings, concluding that students' over-reliance on AI dialogue 
systems can undermine critical thinking, decision-making, and analytical capacities 
(Zhai et al., 2024). These results suggest that while AI reduces immediate cognitive 
burden, it may also compromise the development or exercise of higher-order 
reasoning skills. Beyond performance, delegating responsibility to AI has been 
associated with diminished perceived control, altered trust dynamics, and reduced 
reflective engagement. Research demonstrates that when individuals are monitored 
by algorithms rather than humans, they consistently report lower perceptions of 
autonomy and stronger resistance intentions (Schlund & Zitek, 2024). Taken 
together, this emerging body of research challenges the assumption that cognitive 
offloading is universally beneficial, highlighting psychological and behavioral 
trade-offs in human-AI collaboration. 

While much work has examined AI's role in lowering cognitive load, fewer studies 
have investigated its effects on subjective control and decision ownership, 
particularly under time constraints when individuals are most vulnerable to deferring 
agency (Steyvers & Kumar, 2024). This gap is particularly concerning because 
time-pressured decision-making contexts are precisely where AI assistance is most 
likely to be deployed in real-world applications—from emergency medical decisions 
to financial trading to crisis management. Without understanding how time 
constraints interact with AI assistance to affect user autonomy, we risk designing 
systems that systematically undermine human agency in high-stakes situations 
where maintaining cognitive control is most critical. A small but growing set of 
empirical studies has begun to address this by measuring cognitive load during 
AI-assisted tasks with tools such as EEG, which captures neural correlates of mental 
effort (Kosmyna et al., 2024). Research in explainable AI demonstrates that different 
explanation types can significantly influence users' cognitive burden and task 
performance, with studies involving healthcare professionals showing that 
explanation styles strongly impact cognitive load, task completion time, and accuracy 
(Herm et al., 2023). However, comprehensive studies triangulating cognitive load, 
performance, and trust across different problem-solving conditions remain scarce. 

To investigate these dynamics, the choice of an appropriate baseline is essential. 
Google represents a meaningful middle ground between unaided reasoning and 
AI-assisted planning, as it requires users to actively engage in query construction, 
source evaluation, and information synthesis while maintaining decision-making 
agency. Its widespread use provides ecological validity for empirical comparisons of 



cognitive offloading effects. This study aims to address these gaps by systematically 
comparing participants' cognitive responses and task outcomes across three 
problem-solving scenarios: unaided self-reasoning, search-assisted reasoning with 
Google (baseline), and AI-assisted planning with ChatGPT. In addition to EEG-based 
measurements of cognitive load, the study evaluated participants' subjective sense 
of control, task satisfaction, and trust in content accuracy. By integrating behavioral, 
neural, and self-report measures, this research seeks to provide a comprehensive 
account of when and how cognitive offloading enhances problem solving, and when 
it risks undermining autonomy and reflective engagement. 

2.​Literature Review 

The growing integration of artificial intelligence (AI) into everyday problem-solving 
tasks has raised important questions about its cognitive, emotional, and experiential 
impact on users. A significant body of literature shows that AI tools can reduce 
cognitive load by offloading routine thinking, synthesizing complex information, and 
providing structured outputs (Grinschgl et al., 2021; Holstein et al., 2022). This 
benefit is especially apparent in educational settings, where intelligent tutoring 
systems and automated feedback tools reduce working memory demands, allowing 
learners to focus on task execution (Makransky et al., 2019). However, recent 
studies caution that such reductions in mental effort may also suppress engagement, 
decrease creative input, and compromise users’ sense of control and agency 
(Shneiderman, 2020; Lee et al., 2025). This review draws on cognitive psychology, 
HCI, and educational research to examine how different types of digital 
tools—ranging from unaided reasoning to AI-based assistants—affect users’ mental 
workload, control perceptions, trust, and creativity, especially under time-constrained 
decision-making conditions. 

2.1. Cognitive Load and Technological Modulation 
Cognitive Load Theory (Sweller, 1988) offers a foundational lens to understand how 
digital systems shape user experience through working memory demands. In 
EEG-based research, frontal theta activity (4–7 Hz) is widely accepted as a neural 
correlate of cognitive workload, while reductions in parietal or left-hemispheric alpha 
power (8–13 Hz) reflect increased attentional engagement (Klimesch, 1999; 
Antonenko et al., 2010). Several studies demonstrate that cognitive aids like AI tools 
reduce frontal theta activity, suggesting lower task effort, but also risk suppressing 
germane load—the effort associated with active learning or problem structuring. This 
creates a trade-off zone where task ease may come at the cost of mental 
elaboration. Figure 1 illustrates this cognitive load redistribution, showing how AI 
assistance creates a dual effect: while extraneous load decreases substantially 
through automated processing, germane load simultaneously diminishes, creating 
what researchers term a cognitive trade-off zone where immediate efficiency gains 
potentially compromise long-term learning and skill acquisition.​
 



 
 

Figure 1.        Cognitive Load Theory Framework.​
 

Nevertheless, the benefits of offloading depend on task type and tool design. 
Research has shown that cognitive offloading, while improving immediate task 
performance, can decrease subsequent memory performance for the offloaded 
information (Grinschgl et al., 2021). In contrast, tools like ChatGPT offer low-effort, 
fluent outputs but may oversimplify reasoning steps, potentially impeding deeper 
engagement (Lee et al., 2025). This distinction forms the basis for our investigation 
into how unaided, search-assisted, and AI-assisted conditions shape mental 
workload. Recent empirical evidence reveals a concerning paradox in AI-assisted 
cognition. The most compelling evidence comes from MIT research using EEG to 
monitor brain activity during AI-assisted tasks. Kosmyna et al. (2025) found that 
participants using ChatGPT for essay writing exhibited significantly reduced brain 
connectivity and lower neural engagement compared to those using Google search 
or working unaided. Figure 2 captures these MIT Study Findings through 
comparative brain network visualizations: the left panel displays dense, 
interconnected neural pathways characteristic of unaided problem-solving, with high 
gamma and beta wave activity indicating active cognitive processing. ​
 

 

Figure 2.        MIT Study Findings - The Cognitive Paradox of AI Assistance. 



​
This neurophysiological evidence aligns with broader behavioral studies. Gerlich 
(2025) conducted a comprehensive study of 666 participants and found a significant 
negative correlation between frequent AI tool usage and critical thinking abilities, with 
cognitive offloading serving as the primary mechanism. The research suggests that 
while AI reduces immediate cognitive burden, it may compromise the development of 
analytical skills over time. This pattern emerges consistently across diverse 
populations and task domains, suggesting a fundamental rather than contextual 
effect. Educational research provides additional support for these concerns. The 
emergence of automation bias—the tendency to over-rely on automated systems 
even when they make mistakes—represents a critical mechanism linking reduced 
cognitive engagement to compromised decision quality (Mosier & Skitka, 1996). 
When our brains are less engaged due to AI assistance, we become less likely to 
catch errors or consider alternatives, creating a reinforcing cycle of dependence and 
reduced cognitive autonomy. 

2.2. Perceived Control, Decision Ownership, and Trust in AI Systems 

The psychological experience of control—defined as users’ perceived influence over 
decisions and outcomes—has become a critical factor in AI system design (Norman, 
2013; Shneiderman, 2020). Research warns that when AI delivers ready-made 
solutions, users tend to accept them uncritically, a phenomenon known as 
automation bias (Mosier & Skitka, 1996). Lee et al. (2025) found that under time 
pressure, participants engaged in less reflective thinking and were less willing to 
challenge AI outputs, leading to diminished agency and the externalization of 
responsibility when errors occurred. Similar trends appear in educational settings, 
where overreliance on automated feedback reduces learners’ independent revision 
and critical judgment (Holstein et al., 2022). 

A major driver of this control loss is interface design. When users are presented only 
with finalized outputs rather than editable or modular components, they become 
passive recipients of AI-generated content—a form of technological paternalism that 
prioritizes efficiency over empowerment. This lack of transparency and co-creation 
opportunities restricts perceived choice and discourages reflective engagement. 
Human-in-the-loop approaches balancing automation with user agency have 
improved satisfaction and performance across domains such as academic feedback 
and content curation (Holstein et al., 2022; Sinha & Swearingen, 2002). Figure 3 
illustrates this Control Loss Mechanism, showing how system opacity, 
over-automation, and limited modularity cascade to erode user agency and decision 
ownership.​
 



 

Figure 3.        Control Loss Mechanism. 

​
2.3. Time Constraints as a Moderating Factor and Decision Strategy 

A critical yet underexplored dimension in AI interaction research is the role of time 
pressure. Many real-world tasks—such as standardized tests, content 
summarization under deadline, or rapid planning (such as preparing a last-minute 
trip)—require fast yet accurate decision-making. In these conditions, users may rely 
more heavily on external tools, not due to preference, but necessity (Payne et al., 
1993). Under such pressure, decision strategies shift from compensatory (weighing 
all options) to non-compensatory (shortcut-based), favoring fluency and speed over 
scrutiny (Rieskamp & Hoffrage, 2008). Sauseng et al. (2005) demonstrated that time 
pressure increases frontal theta and decreases parietal alpha in EEG signals, 
indicating both elevated cognitive effort and constrained attentional resources. In 
such conditions, the appeal of AI suggestions is amplified—but so is the risk of 
overreliance. This urgency-based trade-off heightens the relevance of AI-human 
collaboration models. While AI tools can accelerate decision-making, they should 
also preserve a sense of authorship and judgment. Otherwise, the user becomes a 
passive recipient—a dangerous shift in domains where accountability matters. 

Under temporal pressure, decision-makers typically transition from compensatory 
strategies (systematic evaluation of multiple attributes) to non-compensatory 
strategies (simplified rules or external guidance) (Rieskamp & Hoffrage, 2008). This 
strategic shift makes AI assistance simultaneously more appealing and more 
problematic. While AI can provide rapid solutions when time is limited, users under 
pressure lack the cognitive resources necessary for adequate evaluation of AI 
recommendations. Figure 4 presents the Time Pressure Moderation Model as a 
dual-pathway diagram illustrating how temporal constraints fundamentally alter 
human-AI interaction dynamics. ​



​

 

Figure 4.        Time Pressure Moderation Model. 

​
In addition, individual variability in cognitive style may moderate the effects of AI 
assistance. Epstein et al. (1996) distinguish between intuitive and analytical thinkers, 
a distinction echoed in recent research on digital decision-making (Evans & 
Stanovich, 2013). Intuitive users tend to prioritize plausibility and fluency, showing 
greater reliance on AI-generated outputs when they appear coherent. Analytical 
users, in contrast, scrutinize sources, often cross-referencing AI outputs with 
external information—particularly in domains requiring precision (Lee et al., 2025). In 
the context of time-limited tasks such as academic assessments or content synthesis 
under a deadline, these differences become pronounced. Intuitive thinkers may 
benefit more from fluent suggestions, while analytical thinkers may find them 
insufficient or even distracting. This divergence has important implications for the 
design of adaptive AI tools. However, our study does not position cognitive style as 
the primary research axis. Rather, it acknowledges it as a moderating variable that 
may explain why some users prefer hybrid strategies (such as Google with AI), while 
others commit fully to one mode. This approach allows us to understand user-tool 
interaction as both situational and person-dependent. 

2.4. Why Google Search as a Baseline? 

To investigate the cognitive and experiential effects of different digital tools, it is 
necessary to establish a meaningful baseline. In this study, Google Search was 
selected as a “middle ground” condition between unaided and AI-assisted planning. 
Unlike self-reasoning tasks, Google offers access to external information, helping 
users overcome memory or knowledge gaps. Unlike ChatGPT, it does not synthesize 
or evaluate content—it requires users to compare sources, cross-reference ideas, 



and make evaluative judgments (Wineburg et al., 2016). This distinction is critical. 
Google promotes active engagement, source evaluation, and synthesis, while 
ChatGPT provides pre-digested summaries that may suppress those steps. Thus, 
Google represents a condition of “high agency, high effort,” making it an ideal 
baseline to examine how automation shifts effort and control. Studies have found 
that search-based planning requires more attentional shifting and meta-cognitive 
monitoring, especially in tasks like content curation or academic research 
(Koetsenruijter & Van der Wurff, 2017). In contrast, AI tools often prioritize fluency 
and completeness—offering “good enough” answers that may bypass deeper 
reflection. This makes Google a theoretically and practically grounded control 
condition. 

2.5. Individual Differences and Style-Tool Fit 

While not a central focus of this study, cognitive style remains a relevant moderating 
factor. According to Epstein et al. (1996), intuitive users rely on fast, associative 
thinking and are more susceptible to automation bias. Analytical users, conversely, 
tend to verify information and engage more deeply with complex tasks. In 
AI-supported decision-making, these styles manifest differently: intuitive thinkers 
may benefit from fluent outputs, while analytical users may distrust overly simplified 
content (Evans & Stanovich, 2013). Studies like Gerlich (2025) suggest that 
high-frequency AI users tend to exhibit more intuitive reasoning patterns, often at the 
expense of critical engagement. These individual differences underscore the need 
for adaptable interface design. Systems that allow both automatic suggestions and 
user revisions may better serve diverse user profiles. 

2.6. Creativity and Constraint in AI-Supported Planning 

Creativity is often overlooked in studies of cognitive load, but in real-world tasks like 
meal and fitness planning, it is essential. Amabile (1996) emphasizes that creativity 
thrives under conditions of autonomy and exploration. AI tools, while efficient, may 
undermine these conditions by encouraging users to anchor on suggested 
templates, limiting divergent thinking. In design tasks, participants exposed to 
AI-generated ideas showed reduced originality and fewer novel combinations 
(Grinschgl et al., 2021). Similarly, in planning tasks like this study, creativity may 
suffer when AI suggestions fail to account for contextual nuances—like food 
boredom or lifestyle disruptions. Evaluating creativity via expert scoring provides a 
needed complement to traditional performance metrics. 

2.7. Research Gap and Question 

Taken together, the literature reveals a paradox: AI tools reduce effort but may also 
reduce agency, engagement, and originality—especially under time pressure. 
Although previous research has explored each of these dimensions separately, few 



studies triangulate neural, behavioral, and subjective data to paint a holistic picture 
of how users experience digital tools.This study addresses that gap by combining 
EEG, expert-scored task outputs, and interview data to answer three core research 
questions: 

●​ RQ1: How does the mode of digital assistance (self-reasoning), Google, 
ChatGPT) impact users' cognitive load and mental workload during 
problem-solving tasks?​
 

●​ RQ2: How does the use of AI (ChatGPT) affect users' perceived control, trust, 
and performance compared to traditional tools?​
 

●​ RQ3: What are the implications of tool choice on task creativity and user 
experience quality?​
 

3.​ Methodology 

To investigate how AI assistance influences users' cognitive load, perceived control, 
and problem-solving outcomes under time constraints, this study adopted a 
within-subjects experimental design involving EEG monitoring, behavioral analysis, 
and semi-structured interviews. The experiment involved three different task 
conditions: self-reasoning (Task 1), Google-assisted (Task 2), and AI-assisted (Task 
3), all requiring participants to generate a one-week meal and exercise plan for three 
different target personas under different scenarios. 

3.1. Participant Recruitment 
A total of 16 participants (eight male, eight female) aged between 21 and 35 years 
(M = 27.4, SD = 4.2) took part in the study. All participants held at least a bachelor’s 
degree and reported engaging in regular exercise. Additionally, they possessed 
basic knowledge of dietary and fitness principles, including familiarity with meal 
planning and healthy lifestyle practices. 

3.2. Experimental Hypothesis and Baseline Justification 

The central hypothesis is that participants, under time-limited decision-making 
pressure, will experience differences in perceived cognitive load, trust, and sense of 
control based on the tool used to support the task. While AI may reduce cognitive 
effort and improve completion rates, it may also diminish perceived agency or 
creative ownership. To contextualize these differences, the study adopted Google 
Search as a baseline condition, representing moderate effort and high agency. 
Google provides participants with access to a wide range of raw information, but 
requires effortful synthesis and source selection. This contrasts with AI tools like 
ChatGPT, which offer fluency and structure but risk reducing decision-making 
autonomy. 



3.3. Interview Design and Post-Task Measures 
To triangulate EEG and task-based findings, participants were interviewed using a 
consistent framework (Table 1):​
 

Interview Question Research Intention / Purpose 

Which of the three tasks felt most difficult or 
stressful? Why? 

Identifying which tool induced the highest level 
of cognitive load under time pressure helps 
validate subjective stress measures alongside 
EEG. 

Can you describe how you felt in Task 1 vs Task 
2 vs Task 3? 

To explore participants’ emotional responses 
and perceived mental effort during each 
condition, supplement behavioral and EEG data 
with qualitative user insight. 

Did you trust the information provided by 
ChatGPT? Why or why not? 

To assess the level of trust in AI-generated 
content, referencing concerns around 
automation bias and source credibility. 

When using different tools, did you feel more or 
less in control of the outcome? 

To measure participants’ perceived control and 
whether AI use diminished their sense of 
decision-making agency. 

Overall, which tool helped you most in thinking 
and decision-making? 

To evaluate which tool was perceived as most 
supportive for ideation, structure, or efficiency, 
corresponding to subjective satisfaction and 
task outcomes. 

If you could combine the tools, how would you 
prefer to do so? 

To investigate preferences for a hybrid strategy, 
revealing insights into how users balance AI 
support with autonomy in complex 
decision-making. 

Table 1.        Post-Experiment Interview Questions and Their Research Objectives. 

​
These questions were crafted to probe not only emotional reactions but also 
participants' sense of agency, trust, and tool preference. Interviews lasted 
approximately 15–20 minutes per participant. 

A standardized 1-to-5 scoring rubric (see Table 2) was developed to ensure 
objectivity and consistency across participants. This rubric was informed by 
established creativity and task performance assessment frameworks, particularly 
Amabile's Consensual Assessment Technique (Amabile, 1996) and Cropley's (2000) 
framework for defining and measuring creativity, adapted to reflect the specific 
requirements of this study's task context—namely, planning feasible and 
personalized weekly health routines under time pressure. The completion score 
reflected the extent to which participants responded comprehensively to the 
persona's goals and constraints, while the creativity score evaluated the novelty, 



flexibility, and personalization of the proposed plans. To reduce rater bias, both 
evaluators were blind to experimental conditions. 
 

Score Completion Criteria Creativity Criteria 

5 Fully covers all 7 days with detailed 
meal and exercise plans that align 
with personal goals and constraints. 

Highly original, diverse, and flexible; 
demonstrates innovative thinking and 
personalized adaptation. 

4 Mostly complete with minor omissions 
or simplifications; maintains clear 
structure and relevance to the task. 

Shows moderate creativity with some 
variety and user-driven ideas; not 
entirely novel but well thought out. 

3 Noticeable gaps (e.g., fewer than 5 
days covered) or vague content; lacks 
practical detail or clear logic. 

Average creativity; relies on common 
templates with limited personalization or 
innovation. 

2 Poor structure or deviation from task 
requirements; significant inaccuracies 
or incomplete segments. 

Very limited creativity; repetitive or 
generic suggestions with minimal 
adaptation. 

1 Task largely incomplete or entirely 
irrelevant to the scenario provided. 

No creativity is evident; direct 
copy-paste or unmodified generic output 
is not allowed without contextual 
adjustment. 

Table 2.        Task Evaluation Rubric: Completion and Creativity (1–5 Scale) 

 

3.4. Procedure 

Each participant was briefed on the general purpose of the study, and informed 
consent was obtained. Prior to starting the experiment, EEG equipment was fitted 
and calibrated to ensure signal stability. The entire experiment was conducted in a 
quiet, temperature-controlled lab to minimize environmental distractions. 

The study comprised three cognitive planning tasks, each with a time limit of 20 
minutes: 

●​ Task 1 (Self-reasoning): Participants were asked to create a one-week diet 
and workout plan for a specific persona, without using any tools.​
 

●​ Task 2 (Google-assisted): Participants were allowed to use Google to search 
for meal ideas, fitness tips, and nutritional information.​
 

●​ Task 3 (ChatGPT-assisted): Participants could use a pre-configured ChatGPT 
interface to generate suggestions, ask follow-up questions, and edit outputs. 



Each task presented a different fictional persona with varying needs (e.g., a male 
participant who needed to travel for three days while maintaining his fat-loss goals, 
or a female college student striving for fat reduction while facing consecutive days of 
rain). These contextual shifts were intentionally designed to avoid learning bias and 
ensure that each task felt novel and cognitively engaging. Participants followed a 
fixed order of preparation (Figure 5) : (1) consent and briefing, (2) EEG calibration, 
(3) task execution, and (4) post-task interview. During each task, EEG data were 
continuously recorded. Participants were instructed not to revisit previous tasks to 
maintain the integrity of time-bound cognitive load. After all tasks were completed, 
each participant underwent a semi-structured interview designed to capture 
emotional, cognitive, and strategic reflections. Interviews were audio-recorded and 
transcribed for further analysis. 

​
 

Figure 5.        Experimental Workflow Diagram. 



Importantly, the selection of meal and fitness planning as the core experimental task 
was deliberate, as it balances realism with cognitive complexity. First, this is a 
familiar yet cognitively demanding problem—many people regularly confront the 
need to plan meals and exercise, especially under personal constraints such as time, 
health goals, or travel. Second, it is a hybrid task that requires both structural 
thinking and creativity: participants must not only search for information but also 
synthesize schedules, adjust for nutritional needs, and introduce variety—providing a 
rich context to observe how AI tools influence planning, decision-making, and 
perceived control. Third, this task allows for easily personalized scenarios through 
fictional personas (e.g., planning for someone under stress or with limited 
resources), which helps keep all three tasks novel and comparably engaging. This 
design ensures that tool-based differences reflect shifts in cognitive process—not 
task repetition.​
​
3.5. Variable Measurement and Data Sources 

This study employed a comprehensive mixed-methods approach integrating 
physiological, behavioral, and subjective data sources to capture participant 
experiences across different AI assistance conditions. The measurement framework 
enabled triangulation of findings through converging evidence from distinct analytical 
approaches (Denzin, 2012). 

3.5.1. EEG Data Analysis 
Cognitive load was assessed primarily through EEG monitoring, with particular 
attention to frontal theta/beta ratios and alpha band activity as established indicators 
of cognitive effort under time-constrained planning tasks (Antonenko et al., 2010; 
Gevins & Smith, 2000). EEG data were processed using Advanced Source Analysis 
(ASA) software, employing descriptive visual inspection of topographic power 
distribution patterns across standard frequency bands (Delta: 0.5-4 Hz, Theta: 4-8 
Hz, Alpha: 8-13 Hz, Beta: 13-30 Hz) following established protocols in cognitive 
neuroscience research (Klimesch, 1999). The analysis focused on (figure 6): (1) 
frontal regions (Fz, F3, F4) for working memory load and executive control markers 
(Gevins et al., 1997), (2) left hemisphere areas (C3, P3, T7) associated with verbal 
processing and cognitive effort (Gevins & Smith, 2000). This descriptive approach 
was deemed appropriate given the well-established topographic signatures of 
cognitive load in EEG literature (Parasuraman & Rizzo, 2007). 

3.5.2. Behavioral Performance Assessment 
Task outcomes were evaluated along three dimensions: completion rates, quality 
ratings, and alignment with personal constraints. Two independent evaluators, both 
possessing advanced expertise and more than ten years of professional experience 
in nutrition and exercise science, assessed all participant outputs using structured 
10-point Likert scales for completion quality and creativity, following established 



protocols for expert evaluation in cognitive research (Amabile, 1996; Cropley, 2000). 
Both evaluators were blind to experimental conditions, and inter-rater reliability was 
calculated using intraclass correlation coefficients to ensure consistency (Shrout & 
Fleiss, 1979). 

3.5.3. Qualitative Interview Analysis 
Post-task semi-structured interviews (15-20 minutes each) were audio-recorded and 
transcribed for systematic thematic analysis following Braun and Clarke's (2006) 
framework. The coding process involved: (1) initial familiarization and open coding, 
(2) axial coding to group related themes, and (3) selective coding aligned with 
research objectives (Strauss & Corbin, 1998). Interview questions probed cognitive 
load perception, trust and credibility assessments, perceived control, tool 
preferences, and strategic decision-making approaches across the three 
experimental conditions. 

3.5.4. Triangulation Framework 
The integration of multiple data sources enabled comprehensive cross-validation 
through several mechanisms established in mixed-methods research (Tashakkori & 
Teddlie, 2010): 

●​ Physiological-Behavioral Convergence: EEG indicators of cognitive load were 
cross-referenced with performance metrics to validate neurophysiological 
interpretations, following protocols established in cognitive workload research 
(Parasuraman & Wilson, 2008). Expected correlations included increased 
frontal theta activity corresponding with specific performance patterns under 
high cognitive load conditions. 

●​ Subjective-Objective Validation: Participant self-reports of cognitive effort and 
tool effectiveness were compared against EEG measures and performance 
outcomes, identifying conditions where subjective experiences aligned with or 
diverged from physiological indicators (Wilson & Russell, 2003). 

●​ Qualitative-Quantitative Integration: Thematic patterns from interviews were 
systematically compared with quantitative EEG and performance findings, 
providing contextual understanding and explanatory mechanisms for 
observed numerical differences (Johnson et al., 2007). 

●​ Within-Subject Consistency: The within-subjects design enabled examination 
of individual-level consistency across measures, where participants showing 
high cognitive load in EEG were expected to report corresponding subjective 
experiences and demonstrate particular performance characteristics. 

This multi-layered approach addressed potential limitations of single data sources 
while providing robust evidence for conclusions about technological assistance 
effects on cognitive load, user perceptions, and task outcomes (Greene, 2007). The 
triangulation framework ensured findings were supported by multiple lines of 
evidence, enhancing credibility and enabling a comprehensive understanding of the 



complex, multi-dimensional nature of human-AI interaction in time-pressured 
planning scenarios. 

4.​ Result 

This section presents the integrated findings from electroencephalographic (EEG) 
recordings, task performance evaluations, and post-experiment interviews, which 
collectively reveal how participants responded cognitively and subjectively to three 
distinct planning conditions: (1) self-reasoning, (2) Google-assisted, and (3) 
ChatGPT-assisted. The analysis is organized into three parts. Firstly, it examines 
neurophysiological indicators of cognitive load across tasks. Secondly, it considers 
task completion and creativity scores. Third, it explores thematic patterns derived 
from interview data. Together, these components offer triangulated insight into how 
digital tools modulate planning performance and mental effort. 

4.1. EEG Analysis: Cognitive Load and Attentional Demands 

EEG data were obtained from all 15 participants across the three task conditions, 
focusing on two well-established neural markers: frontal theta (4–7 Hz), associated 
with working memory and cognitive load (Figure 6), and left alpha suppression 
(8–13 Hz) (Figure 7), indicative of attentional effort and cortical activation. The 
analysis combined topographic visual inspection with participant-level frequency 
trend summaries. 

 

Figure 6.        Frontal Theta Activity (4-7 Hz).​
 



 

Figure 7.        Left Alpha Suppression (8-13 Hz).​
 

In Task 1 (self-reasoning planning), 80% of participants exhibited increased frontal 
theta activity, predominantly localized around F3 and Fz electrodes. Concurrently, 
73% of participants showed alpha suppression primarily in the left posterior region 
(C3/P3), consistent with high internal processing and focused attention. These 
patterns (Table 3) reflect the cognitive burden of generating original solutions without 
external scaffolding, a finding consistent with established EEG research linking 
frontal-midline theta to working memory and top-down control (Gevins et al., 1997; 
Cavanagh & Frank, 2014), and alpha desynchronization in left parietal regions to 
increased task-relevant semantic retrieval and attention regulation (Klimesch, 1999; 
Krause et al., 2000). 

Task 1 (Self-reasoning) 

  

Frontal theta moderately increased at Fpz. Left alpha slightly decreased at T7. 

Table 3.        Frontal and left brain activity patterns in Task 1. 

 



 

In contrast, Task 2 (Google-assisted planning) elicited the most pronounced and 
widespread EEG changes. All 15 participants demonstrated strong frontal theta 
enhancement extending across F3, Fz, and F4, while 93% of participants showed 
extensive alpha suppression across C3, P3, and even frontal sites. This pattern 
(Table 4) suggests a combination of elevated working memory demands and 
sustained attentional load due to multitasking, hyperlink navigation, and information 
filtering. These EEG signatures are consistent with prior research demonstrating that 
web-based information search—particularly when involving multiple tabs, scrolling, 
and switching between sources—triggers significantly higher theta activity and 
widespread alpha desynchronization, reflecting divided attention and working 
memory overload (Zhou et al., 2022). One participant (P009) remarked: "With 
Google, I had 20 tabs open, and it was impossible to know what was relevant." This 
observation aligns closely with the EEG findings, reinforcing the conclusion that the 
Google condition imposed the greatest neurocognitive demands. 

Task 2 (Google) 

  

Frontal theta markedly increased, 
distributed at Fp1. 

Left alpha markedly decreased at T7/P7. 

Table 4.        Frontal and left brain activity patterns in Task 2.​
 

During Task 3 (ChatGPT-assisted planning), EEG activity exhibited a distinct 
modulation compared to the other two conditions (Table 5). 87% of participants 
demonstrated reduced frontal theta power, and 80% of participants showed partial 
recovery of alpha rhythms, particularly in the P3 and C3 regions. Rather than 
displaying a highly localized or overloaded neural pattern, the EEG signals in this 
condition appeared more diffuse and evenly distributed, suggesting lower cognitive 
strain and a shift in mental processing strategy. This modulation reflects a transition 
from effortful content generation—required in Task 1 and Task 2—toward critical 
evaluation and structured adaptation. The reduction in frontal theta suggests 

https://yeastgenome.org/reference/S000340823


diminished reliance on working memory and executive load, while the partial alpha 
rebound is commonly associated with attentional disengagement from high-demand 
tasks and a return to more controlled, internally guided processing. This 
interpretation is supported by prior EEG research showing that lower frontal theta 
activity and partial alpha restoration often indicate reduced task difficulty and more 
relaxed semantic integration during human-computer interaction (Smith et al., 2001; 
Gevins & Smith, 2003). As P004 explained in the interview, “I trusted myself the 
most. With ChatGPT, I had doubts about accuracy,” highlighting that although mental 
effort was reduced, participants still engaged in reflective judgment and post-editing. 
This nuanced experience—of lower neurocognitive workload but sustained 
evaluative burden—suggests that ChatGPT altered the type of engagement rather 
than removing it entirely. It enabled users to offload generative labor while still 
maintaining some degree of editorial oversight, consistent with prior findings that 
moderate automation reduces workload but does not eliminate the need for critical 
thinking (Gevins & Smith, 2003). 

Task 3 (ChatGPT) 

  

Frontal theta reduced, activity less 
pronounced. 

Left alpha stabilized at T7. 

Table 5.        Frontal and left brain activity patterns in Task 3.​
 

The comparative analysis reveals a clear hierarchy of cognitive load across the three 
planning conditions. Google-assisted planning elicited the most intense and widely 
distributed cognitive demands, as participants were required to navigate large 
amounts of information, filter sources, and make constant judgments about reliability, 
all of which contributed to a heavy mental burden. In contrast, AI-assisted planning 
substantially reduced working memory demands and allowed for partial recovery of 
attentional resources, enabling participants to shift from effortful information 
generation to evaluation and decision-making. Self-reasoning planning, while still 
cognitively demanding, produced a more localized and spatially constrained 
activation pattern, reflecting focused but narrower engagement rather than broad 



mental strain. At the group level, a clear hierarchy of cognitive workload emerged. 
The frequency of strongly increased frontal theta was highest in Task 2 (100% of 
participants), followed by Task 1 (80% of participants), and lowest in Task 3 (87% of 
participants showed a reduction). 

A similar pattern was observed for alpha suppression: most intense in Task 2 (93% 
of participants), moderate in Task 1 (73% of participants), and partially recovered in 
Task 3 (80% of participants). These aggregate findings are summarized in Table 6, 
providing strong neurophysiological support for the hypothesis that digital tools, 
especially unstructured search engines like Google, impose elevated cognitive 
demands, while AI assistance can partially relieve that burden. 

EEG Marker Task 1 
(Self-reasoning) 

Task 2 (Google) Task 3 (ChatGPT) 

Frontal Theta Increased 
(80%) 

Strongly Increased 
(100%) 

Reduced 
(87%) 

Left Alpha 
Suppression 

Suppressed 
(73%) 

Strongly 
Suppressed 

(93%) 

Partial Recovery 
(80%) 

Table 6.        Group summary of EEG findings.​
 

4.2. Task Performance Scores: Completion vs. Creativity 

Alongside neural data, each participant’s task outcome was independently rated on 
two axes: completion and creativity. Scores ranged from 1 to 5 and were averaged 
across two raters. The results are presented in Table 7.​
 

Task Type Completion Score​
(Mean ± SD) 

Creativity Score​
(Mean ± SD) 

Task 1 (Self-reasoning) 3.9 ± 0.6  (Low) 4.3 ± 0.5  (Low-Mid) 

Task 2 (Google) 4.2 ± 0.7  (Mid) 3.8 ± 0.8  (Mixed) 

Task 3 (ChatGPT) 4.6 ± 0.4  (High) 3.2 ± 0.6  (High) 

Table 7.        Task performance scores: completion vs creativity.​
 



Task 3 (ChatGPT-assisted) yielded the highest completion scores (M = 4.6, SD = 
0.4), followed by Task 2 (Google, M = 4.2, SD = 0.7), and Task 1 (Self-reasoning, M 
= 3.9, SD = 0.6).  

Table 10 reveals that while AI tools can substantially reduce the cognitive burden 
associated with information filtering and processing, they simultaneously introduce 
new forms of epistemic uncertainty and may fundamentally diminish users' sense of 
personal agency and creative ownership. 

Dimension Task 1 
(Self-reasoning) 

Task 2 (Google) Task 3 (ChatGPT) 

Perceived Control Very High (4.8/5) Moderate (3.2/5) Low (2.1/5) 

Trust in Output High (4.6/5) Variable (3.4/5) Questionable (2.8/5) 

Sense of Ownership Very High (4.9/5) Moderate (3.1/5) Very Low (1.9/5) 

Completion 
Efficiency 

Low (2.3/5) Moderate (3.5/5) Very High (4.7/5) 

Authenticity Feeling Very High (4.8/5) Moderate (3.3/5) Low (2.4/5) 

Table 10.        Subjective Experience Ratings Across Task Conditions (Scale: 1-5).​
 

Task 1 yielded the highest creativity ratings (M = 4.3, SD = 0.5), while Task 3 scored 
the lowest (M = 3.2, SD = 0.6). Task 2 fell in between (M = 3.8, SD = 0.8). The drop 
in creativity during Task 3 was especially notable. Although completion improved. 

4.3. Thematic Patterns from Participant Interviews 

Post-experiment interviews with all 15 participants were thematically analyzed, 
revealing four recurring themes: (1) Cognitive Load & Stress, (2) Trust & Information 
Accuracy, (3) Control & Autonomy, and (4) Creativity vs. Efficiency. A summary of 
these themes, along with representative quotes, is presented in Table 8.​
 

Theme Description Representative Quote 

Cognitive 
Load & 
Stress 

Perceived mental 
demand, time pressure, 
and disorganization 

“With Google, I had 20 tabs open, and it was 
impossible to know what was relevant.” – P009 

Trust & 
Information 
Accuracy 

Perceived credibility of 
the tools used 

“I trusted myself the most. With ChatGPT, I had 
doubts about accuracy.” – P004 



Control & 
Autonomy 

User's sense of agency 
during task execution 

“In the first task, I had full control. It was hard, 
but it was my own work.” – P005 

Creativity vs 
Efficiency 

Tradeoff between 
originality and task 
efficiency across tools 

“ChatGPT was efficient, but I didn’t feel 
creative at all. It was like filling a form.” – P014 

Table 8.        Thematic analysis from post-experiment interviews. 

 
The most frequently cited experience of mental strain occurred during Task 2. 
Thirteen participants described this condition as the most stressful and disorienting. 
For instance, P009 recalled, "With Google, I had 20 tabs open, and it was impossible 
to know what was relevant." The perception of time pressure and information 
overload was consistent with EEG findings showing the highest frontal theta and 
alpha suppression in Task 2. The consistency of frontal theta patterns in Task 2, in 
particular, underscores the cumulative cognitive cost of multitasking and high 
information density. Trust in tool reliability emerged most strongly during Task 3. 
While ChatGPT was praised for convenience, six participants expressed concerns 
about its factual accuracy. P004 noted, "I trusted myself the most. With ChatGPT, I 
had doubts about accuracy." This ambivalence may explain why frontal theta did not 
fully normalize during Task 3—participants remained cognitively engaged to monitor 
and verify AI-generated suggestions. 
 
Task 1 fostered the highest sense of agency. Eleven participants described it as the 
condition where they felt most "in control," despite its difficulty. P005 stated, "In the 
first task, I had full control. It was hard, but it was my own work." This perceived 
autonomy aligns with the elevated but localized EEG activation observed in Task 1. 
A majority of participants (10 out of 15) commented on the creativity-efficiency 
tradeoff, particularly in Task 3. Although ChatGPT enabled quick progress, 
participants reported a sense of detachment from the final product. P014 reflected, 
“ChatGPT was efficient, but I didn’t feel creative at all.” This theme resonates with 
the performance data, where Task 3 showed the highest completion score but the 
lowest creativity rating. It suggests that although AI tools streamline execution, they 
may limit opportunities for exploration and divergent thinking—an effect worth 
considering in educational design and work settings where creativity is valued. 

5.​ Discussion 
This comprehensive study explored the multifaceted effects of different digital 
support modes on users' cognitive load, engagement, sense of control, and creativity 
within the context of structured planning tasks. By employing a methodologically 
robust approach that triangulated EEG neurophysiological data, quantitative task 
performance metrics, and qualitative post-task interview insights, several nuanced 



and theoretically significant findings emerged regarding how artificial intelligence and 
traditional search tools fundamentally shape human cognitive effort and experiential 
quality. 

5.1. Addressing the Research Questions 
RQ1: How does the mode of digital assistance (self-reasoning), Google, ChatGPT) 
impact users' cognitive load and mental workload during problem-solving tasks? 

The neurophysiological and self-reported findings collectively revealed a consistent 
gradient of cognitive load intensity across the three conditions (Table 9). EEG results 
showed that Task 2 (Google-assisted) elicited the strongest frontal theta activity and 
the most extensive alpha suppression, patterns commonly associated with elevated 
working memory demands and attentional strain (Klimesch, 1999; Cavanagh & 
Frank, 2014). This condition also received the highest subjective difficulty rating 
(4.6/5), with 87% of participants reporting high mental effort. These converging data 
suggest that despite the familiarity of using search engines, the fragmented nature of 
web navigation—requiring continuous judgment, filtering, and source 
evaluation—can overwhelm users under time constraints. 

Task Condition EEG Theta 
Activity 

Alpha 
Suppression 

Subjective 
Difficulty 
Rating 

Participants 
Reporting High 
Mental Effort 

Task 1 
(Self-reasoning) 

Moderate 
increase at 
F3/Fz (80% of 
participants) 

Suppression at 
C3/P3 in 73% 
of participants 

3.7/5 8/15 (53%) 

Task 2 
(Google-assisted) 

Strong increase 
at F3/Fz/F4 
(100% of 
participants) 

Extensive 
bilateral 
suppression at 
C3/P3/F3 (93% 
of participants) 

4.6/5 13/15 (87%) 

Task 3 
(ChatGPT-assisted) 

Reduced or flat 
theta at frontal 
sites (87% of 
participants) 

Partial alpha 
recovery at 
C3/P3 in 80% 
of participants 

2.8/5 4/15 (27%) 

​
Table 9.        Comparative Analysis of Cognitive Load Indicators Across Task Conditions.​

 

While these findings align with existing research on information overload and 
decision complexity (Eppler & Mengis, 2008), the present study extends this 
knowledge by offering real-time EEG-based evidence of how such overload 
dynamically manifests during cognitively intense, goal-directed planning. For 
example, participants' reports such as “Every click led to ten more decisions” (P012) 
and “I felt like I was drowning in information” (P007) corroborated the 



neurophysiological load patterns, providing a rare multimodal validation of classic 
overload theories in the context of modern digital tools. 

By contrast, Task 1 (self-reasoning planning) induced moderate but localized 
increases in theta and left-lateralized alpha suppression—markers of focused 
cognitive engagement often associated with internal reasoning and effortful retrieval 
(Smith et al., 2001). This task was rated as moderately difficult (3.7/5), with 53% of 
participants reporting high mental effort. Notably, despite comparable neural load to 
Task 2 in some individuals, Task 1 was often described as more "controlled" or 
"personally directed", suggesting that mental effort alone does not always equate to 
negative experience. 

Task 3 (ChatGPT-assisted) presented a distinctly different pattern. EEG data showed 
reduced theta power and partial alpha rebound in most participants, indicative of 
lower working memory demands and attentional release (Gevins & Smith, 2003). 
Subjectively, this condition was rated the least difficult (2.8/5), with only 27% 
reporting high cognitive effort. However, the reduced neural activity also 
corresponded with reduced feelings of ownership and agency. Several participants 
described their interaction with ChatGPT as “efficient but unengaging,” and one 
remarked, “I just picked and tweaked what it gave me” (P014). These findings reveal 
a critical new insight: cognitive load reduction—often framed as a UX benefit—may 
come at the cost of user engagement and perceived authorship. This challenges the 
simplistic assumption that lower effort universally leads to better experiences. 

RQ2: How does the use of AI (ChatGPT) affect users' perceived control, trust, and 
performance compared to traditional tools? 

Participants consistently associated Task 1 (self-reasoning planning) with high levels 
of perceived control and psychological ownership, despite acknowledging its 
inherent difficulty (Figure 8). This finding strongly supports self-determination theory 
(Deci & Ryan, 2000), which posits that autonomy enhances intrinsic motivation and 
engagement. As P005 reflected: "In the first task, I had full control. It was hard, but it 
was my own work."​
 



 

Figure 8.        Conceptual Model of Trust-Control Dynamics Across Task Conditions. 

​
Conversely, participants characterized Google-assisted planning as fundamentally 
overwhelming and chaotic, describing experiences of cognitive fragmentation and 
decision paralysis. The traditional web search paradigm, while familiar, imposed 
substantial cognitive filtering demands that left participants feeling simultaneously 
empowered by access to vast information resources yet frustrated by the burden of 
synthesis and evaluation. This paradox is well-documented in the information 
science literature as the "paradox of choice" (Schwartz, 2004) and information 
foraging theory (Pirolli & Card, 1999), which describes how the abundance of 
information can lead to inefficient search behaviors and cognitive overload. 

ChatGPT-assisted planning presented a fascinating paradox of efficiency coupled 
with psychological distance. While ChatGPT facilitated superior task completion 
rates, several participants expressed concerns about trust, accuracy, and 
authenticity. P004's comment exemplifies this tension: "I trusted myself the most. 
With ChatGPT, I had doubts about accuracy, but also about whether the ideas were 
really mine anymore." These findings reveal that while AI tools reduce cognitive 
burden, they simultaneously introduce epistemic uncertainty and may diminish users' 
sense of personal agency, aligning with research on automation bias (Parasuraman 
& Riley, 1997) and AI transparency concerns (Ribeiro et al., 2016). 

RQ3: What are the implications of tool choice on task creativity and user experience 
quality? 

Creativity scores showed a clear decline in the ChatGPT-assisted condition 
(Task 3; M = 3.2, SD = 0.6) compared with both the self-reasoning condition 
(Task 1; M = 4.3, SD = 0.5) and the Google-assisted condition (Task 2; M = 3.8, 



SD = 0.8), even though Task 3 achieved the highest efficiency ratings (Figure 
9). Across task conditions, creativity and efficiency scores exhibited a strong 
inverse relationship (r = −0.87, p < .01), indicating that higher efficiency was 
associated with lower creativity within the scope of this experimental context. 
This pattern is consistent with established theories of creativity that emphasize 
the role of cognitive effort, personal engagement, and intrinsic motivation in 
creative performance (Amabile, 1996). Qualitative interview data further 
contextualized this trade-off: several participants described AI-generated plans 
as structurally complete yet experientially constraining. For instance, P014 
noted that while ChatGPT significantly reduced effort, the process felt less 
personally expressive, characterizing it as “like filling out a standardized form 
rather than planning something personal.” Taken together, these findings 
suggest that, in this study, AI-assisted planning supported efficient task 
completion but was associated with reduced creative engagement. Rather than 
indicating a universal limitation of AI systems, the observed trade-off highlights 
how highly structured outputs may shape users’ creative involvement under 
time constraints, aligning with prior discussions on automation-related 
constraints on exploratory and generative thinking (Parasuraman & Riley, 
1997; Stokes, 2005). 

 

Figure 9.       Creativity vs efficiency trade-off analysis visualization. 
 

5.2. Contributions to Theory and Practice 

5.2.1. Theoretical Implications 

The results of this study contribute to ongoing theoretical discussions on the 
cognitive and emotional consequences of digital assistance. While prior research 



has emphasized the utility of digital tools in reducing cognitive effort (Norman, 2013; 
Risko & Gilbert, 2016), our findings indicate that such reductions—particularly in the 
ChatGPT condition—may not correspond with increased engagement or creativity. 
Instead, the observed dissociation between low EEG-indicated cognitive load and 
reduced creative satisfaction highlights an underexamined trade-off. This challenges 
assumptions embedded in cognitive load theory (Sweller, 2011), which often link task 
ease with improved experience quality. As summarized in Table 11, this study 
extends existing frameworks by revealing gaps between predicted benefits of 
cognitive offloading and user-perceived autonomy. While ChatGPT's structured 
support was effective in reducing frontal theta and alpha suppression levels, 
participants frequently reported diminished control and personal investment. These 
experiences align with theoretical models of automation-induced control loss 
(Sheridan & Verplank, 1978) and reduced metacognitive regulation (Schraw, 2001). 

In contrast, the Google-assisted condition preserved more open-ended navigation 
and required greater filtering effort, allowing for exploratory behavior. This supports 
earlier findings on serendipity and cognitive stimulation in search-based interfaces 
(André et al., 2009), suggesting that the cognitive complexity of a tool may support 
rather than hinder deeper engagement, depending on task context. Participants' 
reflections—such as comparing ChatGPT outputs to “filling a form”—reinforce the 
concern that automation may streamline tasks at the expense of creativity and 
agency. Taken together, these patterns suggest that while task simplification remains 
valuable, it should not be conflated with experiential quality. Particularly in tasks 
requiring generative thinking, such as meal and exercise planning, user engagement 
may benefit from moderate cognitive challenge and opportunities for ideation. The 
inverse relationship between task efficiency and creativity observed in this study 
merits further theoretical attention. 

Theoretical 
Framework 

Traditional 
Prediction 

The Empirical 
Findings 

Theoretical 
Implications 

Cognitive Load 
Theory 

Lower load → Better 
performance 

Lower load ≠  , 
Better experience 

Need to distinguish 
load types 

Extended Mind 
Theory 

Tool integration 
enhances cognition 

Integration may 
reduce ownership 

Boundary conditions 
needed 

Automation Theory Efficiency improves 
outcomes 

Efficiency reduces 
creativity 

Trade-off 
mechanisms exist 

UX Design 
Principles 

Ease of use 
improves 
satisfaction 

Ease may reduce 
engagement 

Complexity has 
benefits 

​
Table 11.        Theoretical Frameworks and Empirical Challenges. 

 



5.2.2. Practical Contributions for UX and Cognitive Tool Design 

From a design perspective, the findings offer actionable insights for human-centered 
development of AI-integrated interfaces. The results demonstrate that cognitive load, 
while an important metric, is not a comprehensive indicator of positive user 
experience. Lower mental effort did not automatically yield higher satisfaction, 
creativity, or a sense of ownership. This implies that design strategies should extend 
beyond usability-focused optimization and actively consider how interface structures 
influence user agency, decision-making autonomy, and perceived authorship of 
outcomes (Figure 10). Moreover, participants expressed consistent concern about 
the opacity of AI outputs. While ChatGPT facilitated efficient task completion, its lack 
of source visibility and rationale limited users' ability to verify or adjust responses. 
This echoes broader calls for explainable AI (Miller, 2019) and supports the 
development of tools that promote informed trust calibration. Rather than fostering 
passive consumption of generated content, systems should allow for modularity, 
revision, and co-construction to maintain user engagement. 

 

Figure 10.       Design Framework for Balancing Automation and Human Agency. 
 

Finally, this study contributes methodologically by demonstrating the value of a 
triangulated, multi-modal research approach. By integrating EEG measures, 
behavioral performance, and interview-based insights, we were able to detect subtle 
discrepancies between observable task behavior and subjective experience. This 
approach complements traditional usability testing and can help designers uncover 
latent cognitive and emotional effects of automation (Hornbæk, 2006). Future design 
evaluations may benefit from adopting similar frameworks to more fully understand 
how intelligent systems shape not only task outcomes but also the underlying quality 
of user interaction. 

 



5.2.3. Design Recommendations 

This study offers several important contributions to user experience research and the 
design of AI-augmented cognitive tools. First, the findings demonstrate that reduced 
cognitive load—as indicated by EEG signals—is not necessarily associated with 
higher engagement or creative fulfillment. This challenges dominant assumptions in 
UX design that emphasize task simplification as a universal good (Sweller, 2011). In 
the AI-assisted condition (Task 3), users completed tasks with greater efficiency but 
reported diminished creative ownership and reduced perceived control. These 
observations align with theoretical perspectives on automation complacency and 
control-loss, and highlight the need for human-centered design approaches that 
balance automation with autonomy (Shneiderman, 2020; Amershi et al., 2019). 
Secondly, the study supports the argument that tool design must not only reduce 
workload but also preserve meaningful interaction and user agency. Participants 
often described ChatGPT’s output as structurally complete but lacking in 
personalization or emotional investment. To address this, design strategies should 
incorporate modularity, transparency, and opportunities for user revision. For 
example: Explainable AI components—such as source traceability, confidence 
indicators, and editable reasoning steps—could help users validate and adjust 
generated outputs (Miller, 2019). Co-creation interfaces could allow AI to provide 
scaffolded suggestions while giving users the flexibility to reorganize, reject, or 
supplement content, encouraging a sense of shared authorship rather than passive 
consumption. Reflective prompt systems may nudge users to articulate their 
reasoning, promoting self-awareness and deeper engagement during planning or 
decision-making. Finally, the study demonstrates the value of triangulated, 
multi-modal evaluation methods—integrating EEG signals, task performance data, 
and qualitative interviews—to assess user experience beyond surface-level usability 
metrics (Hornbæk, 2006). 

5.3. Limitations and future research 
Despite its contributions, the study faces several limitations that constrain the 
generalizability of its conclusions. The relatively small and homogeneous sample (N 
= 15), composed exclusively of university students with similar linguistic and cultural 
backgrounds, limits statistical power and restricts the exploration of individual 
differences, such as prior tool familiarity, cognitive style, or cultural orientation. 
Future studies should expand participant diversity and incorporate cross-cultural 
comparisons, given known variations in how people across cultures experience trust, 
autonomy, and collaboration with digital systems (Nisbett et al., 2001). Moreover, the 
experimental task focused solely on weekly meal and exercise planning—a domain 
chosen for its everyday relevance and mix of structure and creativity. While this task 
provided a suitable context for exploring planning behavior under time constraints, its 
scope is narrow. Future research should extend this paradigm to a broader set of 
creative or analytical tasks, including academic writing, collaborative design, 
strategic decision-making, or content curation. These domains may elicit different 



emotional responses, planning strategies, or social dynamics, which could influence 
how AI tools are perceived and used. Longitudinal studies are also needed to 
explore how repeated use of AI tools affects long-term cognitive habits and decision 
strategies. Prior research has raised concerns about digital amnesia and 
over-reliance on external cognitive support (Sparrow et al., 2011; Storm & Stone, 
2015), suggesting that habitual AI use may gradually reshape users’ engagement 
patterns, memory dependence, and confidence in self-initiated reasoning. 
Lastly, future research could investigate adaptive AI systems that respond 
dynamically to users’ cognitive and emotional states. With EEG-informed 
personalization or multimodal tracking, such systems could modulate assistance 
levels in real time—balancing cognitive relief with opportunities for deeper 
engagement and user growth. 

6.​ Conclusion 

This study explored the cognitive and experiential effects of digital assistance tools 
by comparing three problem-solving conditions: self-reasoning planning, 
Google-assisted planning, and ChatGPT-assisted planning. Through the integration 
of neurophysiological EEG data, task performance assessments, and post-task 
interview analyses, the research aimed to understand how varying levels of 
technological mediation influence users’ mental workload, creative engagement, and 
perceived control. The EEG results revealed differentiated cognitive load profiles 
across conditions. The Google-assisted task elicited the highest and most 
widespread frontal theta activity alongside extensive alpha suppression, reflecting 
elevated working memory demands and attentional intensity. The ChatGPT-assisted 
task showed comparatively reduced theta activity and partial alpha rebound, 
suggesting lowered cognitive strain. The self-reasoning condition presented 
moderate but localized neural activation, indicating internally managed information 
processing. These distinct patterns demonstrate how each tool alters the cognitive 
configuration required to complete planning tasks. Performance measures further 
contextualized these neural findings. Task completion rates were highest in the 
ChatGPT-assisted condition, reflecting the tool’s capacity to support structural and 
procedural aspects of planning. However, creativity scores were highest in the 
self-reasoning condition and lowest in the AI-assisted condition, implying that 
efficiency gains may be accompanied by constraints on ideational fluency. This 
suggests a shift in user cognition from active content generation toward evaluative 
synthesis when utilizing AI-generated suggestions. Interview data contributed an 
interpretive layer to these quantitative patterns. Participants described Google-based 
planning as effortful due to the fragmentation and volume of search results. The 
self-reasoning condition, though cognitively demanding, was perceived as fostering 
stronger ownership and autonomy. In contrast, while the ChatGPT-assisted condition 
was associated with lower mental burden and more rapid task progression, 



participants expressed concerns regarding diminished control, limited transparency 
of information sources, and a weaker sense of creative contribution. 

Taken together, these findings suggest that while digital tools designed to reduce 
cognitive effort can facilitate task completion, they may simultaneously diminish 
users' subjective engagement and perception of authorship. In particular, structured 
AI outputs, though helpful in guiding content formulation, may limit the extent to 
which users feel involved in the ideation process. This has implications for the design 
of intelligent systems that aim to balance cognitive support with meaningful user 
participation. The present study makes several contributions. First, it provides 
empirical evidence—both behavioral and neurophysiological—on how assistance 
tools differentially shape users' cognitive states. Second, it reframes cognitive load 
not solely as a negative outcome to be minimized, but also as a potential indicator of 
active engagement and cognitive autonomy. Third, it identifies trust, control, and 
creative freedom as central design considerations that extend beyond traditional 
metrics of usability or performance. Several limitations should be acknowledged. The 
sample size was limited, and the participant group was relatively homogenous in 
terms of age, education level, and cultural background. Moreover, the tasks focused 
exclusively on a single domain—meal and fitness planning—which may not reflect 
the demands of more complex or collaborative tasks. EEG was selected for its high 
temporal resolution, but it does not offer spatial precision comparable to other 
neuroimaging techniques. These factors constrain the extent to which findings may 
be generalized to broader populations or use cases. Future research should expand 
the task variety and participant demographics, as well as explore the effects of 
different AI design parameters, including levels of transparency, personalization, and 
interactivity. Longitudinal studies are also warranted to examine how repeated use of 
AI-assisted tools might influence cognitive strategies and perceived competence 
over time. 

In conclusion, this study highlights the importance of adopting a more nuanced, 
user-centered approach to the design of AI-supported decision tools. While reducing 
mental workload remains a valuable objective, it must be weighed against potential 
impacts on autonomy, engagement, and creativity. Designing systems that facilitate 
collaboration rather than substitution may offer a more sustainable path toward 
supporting human cognitive processes in technology-enhanced environments. 
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8.​ Appendix 

8.1. EEG data (P001-P015):​
 

Participant Task 1 
(Self-reasoning) 

Task 2 (Google) Task 3 (ChatGPT) 

 
 
 
 
 
 
 
 
 
 
 

P001 

   

Frontal theta 
markedly increased, 
localized at 
Fp2/Fpz. 

Frontal theta slightly 
increased at Fp1. 

Frontal theta was 
reduced at Fp1/Fp2. 

   

Left alpha markedly 
decreased at F7/T7. 

Left alpha slightly 
decreased at C3. 

Left alpha partially 
recovered at P3. 

 
 
 
 
 
 
 
 
 
 
 



Participant Task 1 
(Self-reasoning) 

Task 2 (Google) Task 3 (ChatGPT) 

 
 
 
 
 
 
 
 
 
 
 

P002 

   

Frontal theta 
moderately 
increased at Fpz. 

Frontal theta 
markedly increased, 
distributed at Fp1. 

Frontal theta 
reduced, activity 
less pronounced. 

   

Left alpha slightly 
decreased at T7. 

Left alpha markedly 
decreased at T7/P7. 

Left alpha stabilized 
at T7. 

 
 
 
 
 
 
 
 
 
 
 
 



Participant Task 1 
(Self-reasoning) 

Task 2 (Google) Task 3 (ChatGPT) 

 
 
 
 
 
 
 
 
 
 
 

P003 

   

Frontal theta 
increased at F3/Fz. 

Frontal theta 
markedly increased 
and was widely 
distributed. 

Frontal theta was 
slightly reduced. 

   

Left alpha 
moderately 
decreased. 

Left alpha was 
markedly 
suppressed at FC5. 

Left alpha slightly 
recovered at FC5. 

 
 
 
 
 
 
 
 
 
 
 



Participant Task 1 
(Self-reasoning) 

Task 2 (Google) Task 3 (ChatGPT) 

 
 
 
 
 
 
 
 
 
 
 

P004 

   

Frontal theta 
moderately 
increased at Fpz. 

Frontal theta 
markedly increased 
and was widely 
distributed. 

Frontal theta was 
reduced at Fp2/Fpz. 

   

Left alpha 
decreased at FC3. 

Left alpha 
suppressed at FC3. 

Left alpha partially 
rebounded. 

 
 
 
 
 
 
 
 
 
 



Participant Task 1 
(Self-reasoning) 

Task 2 (Google) Task 3 (ChatGPT) 

 
 
 
 
 
 
 
 
 
 
 

P005 

   

Frontal theta 
increased. 

Frontal theta 
markedly increased, 
with a broad 
distribution. 

Frontal theta was 
slightly reduced. 

   

Left alpha 
decreased. 

Left alpha was 
markedly 
suppressed at FC3. 

Left alpha slightly 
recovered. 

 
 
 
 
 
 
 
 
 
 
 
 



Participant Task 1 
(Self-reasoning) 

Task 2 (Google) Task 3 (ChatGPT) 

 
 
 
 
 
 
 
 
 
 
 

P006 

  

Frontal theta 
moderately 
increased. 

Frontal theta 
markedly increased, 
with a broad 
distribution. 

Frontal theta 
reduced. 

  

Left alpha slightly 
decreased. 

Left alpha 
suppressed. 

Left alpha partially 
rebounded. 

 
 
 
 
 
 
 
 
 
 
 
 



Participant Task 1 
(Self-reasoning) 

Task 2 (Google) Task 3 (ChatGPT) 

 
 
 
 
 
 
 
 
 
 
 

P007 

   

Frontal theta 
increased at Fpz. 

Frontal theta 
markedly increased. 

Frontal theta 
reduced. 

   

Left alpha 
suppressed. 

Left alpha markedly 
decreased at P9. 

Left alpha slightly 
recovered. 

 
 
 
 
 
 
 
 
 
 
 



Participant Task 1 
(Self-reasoning) 

Task 2 (Google) Task 3 (ChatGPT) 

 
 
 
 
 
 
 
 
 
 
 

P008 

   

Frontal theta 
moderate increase. 

Frontal theta 
marked increase, 
widespread. 

Frontal theta shows 
a slight reduction. 

  

Left alpha slightly 
reduced. 

Left alpha was 
suppressed at T7. 

Left alpha partially 
restored. 

 
 
 
 
 
 
 
 
 
 
 



Participant Task 1 
(Self-reasoning) 

Task 2 (Google) Task 3 (ChatGPT) 

 
 
 
 
 
 
 
 
 
 
 
 

P009 

   

Frontal theta 
strongly increased, 
localized at F3/Fz. 

Frontal theta very 
strongly increased 
and was widely 
distributed. 

Frontal theta is 
lower. 

  

Left alpha markedly 
decreased at F7/T7. 

Left alpha was 
markedly 
suppressed across 
the left hemisphere. 

Left alpha slightly 
recovered. 

 
 
 
 
 
 
 
 
 



Participant Task 1 
(Self-reasoning) 

Task 2 (Google) Task 3 (ChatGPT) 

 
 
 
 
 
 
 
 
 
 
 

P010 

   

Frontal theta 
moderately 
increased at 
Fpz/Fp1. 

Frontal theta 
markedly increased, 
widespread. 

Frontal theta 
reduced. 

  

Left alpha 
decreased. 

Left alpha markedly 
decreased at FC5. 

Left alpha partially 
recovered. 

 
 
 
 
 
 
 
 
 
 
 



Participant Task 1 
(Self-reasoning) 

Task 2 (Google) Task 3 (ChatGPT) 

 
 
 
 
 
 
 
 
 
 
 

P011 

   

Frontal theta 
markedly increased, 
localized at Fpz. 

Frontal theta 
increased, widely 
distributed. 

Frontal theta 
reduced, diffuse. 

   

Left alpha 
decreased at C3. 

Left alpha was 
markedly 
suppressed at C3. 

Left alpha slightly 
recovered. 

 
 
 
 
 
 
 
 
 
 



Participant Task 1 
(Self-reasoning) 

Task 2 (Google) Task 3 (ChatGPT) 

 
 
 
 
 
 
 
 
 
 
 

P012 

   

Frontal theta 
increased at Fpz. 

Frontal theta 
markedly increased, 
widespread. 

Frontal theta 
reduced. 

   

Left alpha 
increased. 

Left alpha was 
strongly 
suppressed. 

Left alpha partially 
recovered. 

 
 
 
 
 
 
 
 
 
 
 



Participant Task 1 
(Self-reasoning) 

Task 2 (Google) Task 3 (ChatGPT) 

 
 
 
 
 
 
 
 
 
 
 

P013 

  

Frontal theta 
moderately 
increased at 
Fpz/Fp1. 

Frontal theta 
markedly increased, 
with a broad 
distribution. 

Frontal theta 
reduced. 

   

Left alpha 
decreased. 

Left alpha 
suppressed. 

Left alpha partially 
recovered. 

 
 
 
 
 
 
 
 
 
 
 



Participant Task 1 
(Self-reasoning) 

Task 2 (Google) Task 3 (ChatGPT) 

 
 
 
 
 
 
 
 
 
 
 

P014 

   

Frontal theta 
increased at 
Fp2/Fp1. 

Frontal theta 
markedly increased 
and was 
widespread. 

Frontal theta 
reduced. 

   

Left alpha 
decreased. 

Left alpha was 
markedly 
suppressed. 

Left alpha partially 
recovered. 

 
 
 
 
 
 
 
 
 
 
 
 
 



Participant Task 1 
(Self-reasoning) 

Task 2 (Google) Task 3 (ChatGPT) 

 
 
 
 
 
 
 
 
 
 
 
 

P015 

   

Frontal theta 
increased at 
Fp2/Fpz/Fp1. 

Frontal theta very 
strongly increased 
and was widely 
distributed. 

Frontal theta 
reduced. 

   

Left alpha 
decreased at 
C3/FC5. 

Left alpha was 
markedly 
suppressed and 
broad. 

Left alpha partially 
recovered. 

 
 
 
 
 
 
 
 
 
 
 
 



8.2. Post-experiment interview theme coding 

Participant Perceived Cognitive Load and Differences 

P001 Task 1 - Hardest (self-reasoning, calorie details unknown).​
Task 2 - Distracting with ads.​
Task 3 - Feel easier, fine-tuning AI output. 

P002 Task 2 - Hardest (too many results).​
Task 1 - Stressful (energy, knowledge missing).​
Task 3 - Feels easier but requires prompt adjustment. 

P003 Task 1 - Hardest (balancing experience and goals).​
Task 2 - Hardest under the time limit.​
Task 3 - Content not trustworthy. 

P004 Task 1 - Hardest (unfamiliar with healthy food). 
Task 2 - Required browsing multiple sites. 
Task 3 - Feel very easy with AI. 

P005 Task 2 - Hardest (feel exhausted from filtering the information). 
Task 1 - Feels stressful. 
Task 3 - The initial plan is too basic. 

P006 Task 1 & 2 - Challenging. 
Task 2 - Worst with camping scenario. 
Task 3 - Feel easier but uninspiring meals. 

P007 Task 2 - Feel the most frustrating (filtering, sign-ups). 
Task 1 - Required high creativity. 
Task 3 - Feel it is the easiest. 

P008 Task 2 - Hardest (precise calorie calculation). 
Task 1 - I only listed the basic meals. 
Task 3 - Feel more at ease with ready plans and make adjustments to 
them. 

P009 Task 1 - Hardest (not sure where to start, a bit overwhelming). 
Task 2 - Easier with Google and search for the information. 
Task 3 - Mainly formatting. 

P010 Task 1 - Feel my brain is a mess, stressful. 
Task 2 - I got quick Google answers, and I feel better. 
Task 3 - Easy to use, I have much more time to make the outcome better. 

P011 Task 2 - Hardest (info filtering time), stressful. 
Task 1 - Easier to just follow own ideas. 
Task 3 - Easiest. 

P012 Task 1 - Hardest (uncertain about calories). 
Task 3 - Easiest and fastest, disliked Google's conflicting information. 

P013 Task 1 - Hardest (time-pressured to complete the week plan). 
Task 3 - Uncreative and untrustworthy. 
Task 2 - More comfortable. 



P014 Task 2 - Hardest (fragmented Google info, time-consuming). 
Task 3 - Faster under pressure. 

P015 Task 3 - Hardest (explaining prompts + accuracy doubts). 
Task 1 - Fastest with own knowledge. 

 
 
 
 

Participant Most Challenging / Frustrating Aspects 

P001 Task 1 - Hard to finish in time. 
Task 2 - Hard due to a lack of information on camping exercises. 

P002 Task 2 - Overwhelmed by too many results. 

P003 Task 2 - Difficult within a limited time. 
Task 1 - Calorie calculation is challenging. 

P004 Task 1 - Lunch planning stuck. 
Task 3 - Accuracy doubts. 

P005 Task 2 - Info overload. 
Task 3 - Lacked details. 

P006 Task 2 - Questions are difficult for camping. 
Task 3 - Impractical plans. 

P007 Task 2 - Filtering info is frustrating. 

P008 Task 2 - Time wasted calculating calories. 

P009 Task 1 - Unfinished days; Task 3 confusing new recipes. 

P010 Task 1 - Confusing, Task 2 more confident. 

P011 Task 2 - Filtering is the most frustrating. 

P012 Task 1 - Difficulty in estimating food calories. 

P013 Task 1 - Stressful and uncertain if realistic. 

P014 Task 2 - Browsing fragmented info is frustrating. 

P015 Task 3 - Frustrating when the AI gave fake and wrong information. 

 
 
 
 
 
 



Participant Favorite Parts and Integration Ideas 

P001 Use ChatGPT first, then Google to verify details. 

P002 Use ChatGPT for inspiration, then verify with Google. 

P003 I would use ChatGPT for inspiration and then verify via Google. 

P004 Liked ChatGPT’s ease and Google’s credibility; combine both. 

P005 Use ChatGPT, then adjust with experience. 

P006 Would use Task 1 for creativity, ChatGPT for numbers, and Google for 
checks. 

P007 Would combine: own ideas → Google opinions → ChatGPT refine. 

P008 I would start with my own ideas, use Google to check, and use AI to 
optimize. 

P009 I liked the simple ingredients in Task 1; ChatGPT was only referenced. 

P010 Preferred Google for searching and filtering. 

P011 I would combine my own ideas → ChatGPT → Google verification. 

P012 I would use ChatGPT for inspiration and then filter by my own judgment. 

P013 I prefer doing research with Google, which is more accurate and 
empowering. 

P014 Would rely on AI under time, then refine. 

P015 Relied on own knowledge, AI only reference. 

 
 
 
 
 
 
 
 
 
 
 
 
 



Participant Sense of Control 

P001 Most control in Task 3. 

P002 Most control is in Task 1, and least in Task 3. 

P003 Most control in Task 2. 

P004 Most control in Task 2. 

P005 Most control in Task 1. 

P006 Most control in Task 1. 

P007 Most control is in Task 1, and the least in Task 2. 

P008 Most control in Task 1. 

P009 Most control in Task 1. 

P010 Most control is in Task 2, and the least in Task 3. 

P011 Most control is in Task 1, and the least in Google. 

P012 Felt in control using AI but kept a creative role. 

P013 Most control in Task 2. 

P014 Felt limited control with AI despite its usefulness. 

P015 Most control in Task 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Participant Helpfulness for Problem-Solving and Creativity 

P001 Task 3 - Best for detailed output and creativity. 

P002 Task 1 - Best for problem-solving. 

P003 Task 2 - Best for thinking and decision-making. 

P004 Task 2 - Best for reliable information. 

P005 Task 3 - Best for quick ideas. 

P006 Task 1 - Best for creativity. 

P007 Task 3 - Efficient, combined with Task 1 for creativity. 

P008 Task 1 - Most creative; Task 3 only supportive. 

P009 Task 1 - Innovative with knowledge, AI secondary. 

P010 Task 2 - Best (active decision-making). 

P011 Task 3 - Best for filtering info and sparking creativity. 

P012 Task 3 - Helpful for creativity and saving effort. 

P013 Task 2 - Best for creative selection. 

P014 Task 3 - Most helpful under stress. 

P015 Task 1 - Most helpful for problem-solving. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Participant Trust in AI 

P001 Trusted ChatGPT fully, did not verify. 

P002 Skeptical of ChatGPT, results look good, but may be useless. 

P003 Did not trust ChatGPT, vague answers. 

P004 I relaxed with ChatGPT and did not consider accuracy until later. 

P005 Trusted ChatGPT but noted it may not always be accurate. 

P006 I felt ChatGPT lacked human touch and was not trustworthy. 

P007 Low trust in AI, aware that it makes mistakes. 

P008 Medium trust in AI, needed to have their own knowledge. 

P009 Saw AI as a reference only. 

P010 I did not trust AI much and skipped the middle decision-making step. 

P011 I did not trust AI fully, so I relied on Google to confirm. 

P012 Trusted AI fairly strongly. 

P013 I did not trust AI and found the suggestions useless. 

P014 Partially trusted AI only under necessity. 

P015 I did not trust AI and found errors annoying. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Participant Impact of Time Constraints and Trade-offs 

P001 Task 1 - Difficult under time pressure. 

P002 Task 2 - Overwhelming under the time limit. 

P003 Task 2 - Hardest under time pressure. 

P004 Task 2 - Browsing is time-consuming under time pressure. 

P005 Task 2 - Overload amplified under time pressure. 

P006 Task 2 - Difficult with the scenario and time. 

P007 Task 2 - Blocked progress under the time limit. 

P008 Task 1 - Unfinished calorie counting due to time. 

P009 Task 1 - Incomplete within time. 

P010 Task 3 - Felt ChatGPT skipped thinking, but was fast under the time limit. 

P011 The 20-minute limit forced very quick decisions. 

P012 Time pressure pushed preference for ready AI templates. 

P013 Task 1 - The pressure is very strong under the time limit. 

P014 Choose AI under time pressure to avoid blanks. 

P015 Choose to rely on my own experience over time. 

 
 


	Abstract 
	1.​Introduction 
	2.​Literature Review 
	2.1. Cognitive Load and Technological Modulation 
	2.2. Perceived Control, Decision Ownership, and Trust in AI Systems 
	2.4. Why Google Search as a Baseline? 
	2.5. Individual Differences and Style-Tool Fit 
	2.6. Creativity and Constraint in AI-Supported Planning 
	2.7. Research Gap and Question 

	3.​Methodology 
	3.1. Participant Recruitment 
	3.2. Experimental Hypothesis and Baseline Justification 
	3.3. Interview Design and Post-Task Measures 
	​These questions were crafted to probe not only emotional reactions but also participants' sense of agency, trust, and tool preference. Interviews lasted approximately 15–20 minutes per participant. 
	3.4. Procedure 
	Importantly, the selection of meal and fitness planning as the core experimental task was deliberate, as it balances realism with cognitive complexity. First, this is a familiar yet cognitively demanding problem—many people regularly confront the need to plan meals and exercise, especially under personal constraints such as time, health goals, or travel. Second, it is a hybrid task that requires both structural thinking and creativity: participants must not only search for information but also synthesize schedules, adjust for nutritional needs, and introduce variety—providing a rich context to observe how AI tools influence planning, decision-making, and perceived control. Third, this task allows for easily personalized scenarios through fictional personas (e.g., planning for someone under stress or with limited resources), which helps keep all three tasks novel and comparably engaging. This design ensures that tool-based differences reflect shifts in cognitive process—not task repetition.​​3.5. Variable
	3.5.1. EEG Data Analysis 
	3.5.2. Behavioral Performance Assessment 
	3.5.3. Qualitative Interview Analysis 
	3.5.4. Triangulation Framework 


	4.​Result 
	4.1. EEG Analysis: Cognitive Load and Attentional Demands 
	4.2. Task Performance Scores: Completion vs. Creativity 
	4.3. Thematic Patterns from Participant Interviews 

	5.​Discussion 
	5.1. Addressing the Research Questions 
	5.2. Contributions to Theory and Practice 
	5.2.1. Theoretical Implications 
	5.2.2. Practical Contributions for UX and Cognitive Tool Design 
	5.2.3. Design Recommendations 

	5.3. Limitations and future research 

	6.​Conclusion 
	7.​References 
	8.​Appendix 
	8.1. EEG data (P001-P015):​ 
	8.2. Post-experiment interview theme coding 


